Current Projects

Oxygen Storage (FVV)

Oxygen Storage/ Thermo-physical modelling of oxygen storage in three-way catalysts

Brief description
The oxygen storage capacity (OSC) in three-way catalysts (TWC) is directly linked to ceria-based materials. Their ability to store and release oxygen can buffer fluctuations in the exhaust stoichiometry. Thus, the stoichiometry of the exhaust gas can be kept within the small target air-to-fuel-ratio window (λ-window) around λ = 1 even when engine stoichiometry switches from lean to rich or vice versa. This is a desired requirement for a simultaneous conversion of the three pollutants NOx, CO, and unburned hydrocarbons.
Materials providing OSC in TWC are ceria-zirconia solid solutions of type CexZr1-xO2-δ (0<x<1). A detailed understanding of the thermodynamic properties of oxygen incorporation in these materials is important for optimization of the oxygen storage and release performance. The oxygen storage and release ability depends on the Ce/Zr ratio (the x-value), the amount of oxygen in the bulk (the δ-value) as well as the relative content of Ce4+ and Ce3+. The change in Gibbs free energy associated with storage or release of oxygen (∆G(δ)) and the change of Gibbs free energy due to changes of the Ce/Zr ratio (∆GS(x)) are distinguished properties of the oxygen storage material. Once those values are known, the equilibrium constants of all oxygen storage and release reactions can be directly derived. Experimental methods for doing so are based on measuring the equilibrium O2 partial pressure.
The goal of the present project is to get a better understanding of how the equilibrium partial pressure of oxygen over oxygen storage materials can be measured and theoretically described. For that purpose, a series of tests on well-defined model-catalysts and industrial catalysts operated under idealized gas conditions as well as gas mixtures representing engine exhaust composition under realistic operation conditions will be performed. The knowledge gained will be incorporated into a model capable of depicting the dynamic behavior of a TWC. Said model can then be used for a better control of the TWCs performance and on-board diagnosis, benefitting car manufactures as well as engine control unit and catalyst supplies.

Executor:
Chair of Applied physics / sensor technology
Brandenburg University of Technology Cottbus-Senftenberg
K.-Wachsmann-Allee 17
03046 Cottbus

Project manager:
Prof. Dr. Dieter Schmeißer (until 31.08.2018)

Duration:
01.07.2018 - 30.06.2020

Index of advancement:
6013150/ Oxygen-Storage M2816

Promotional institution:
Forschungsvereinigung Verbrennungskraftmaschinen e.V. | Research Association for Combustion Engines

Keywords:
Three-way-catalyst, oxygen storage, emissions, cerium oxide, reaction kinetics, reaction equilibrium, simulation

                           

                              

                        

                                

                                

                                 

ALD of IGZO layers ( BMWi, ZIM, ZF4510602AG7)

ALD process development of ternary and quaternary thin layers for transparent conducting oxides

Sub-project: Spectrsocopic characterization of IGZO layers

Brief description
The project focuses on the research and development of the atomic layer deposition (ALD) process of high-quality thin transparent conducting mixed oxides of the material class In-Ga-Zn-oxide (IGZO).
The quaternary IGZO material system is highly attractive for transparent electrodes in photovoltaics, LEDs, energy-efficient windows and in particular for thin film transistors in flexible or active matrix displays as well as for the low-cost paper electronic. For the fabrication of the oxidic thin films process and cost effective deposition techniques are required.
The usage of the ALD method for the deposition of thin IGZO layers offers one the one hand higher process controllability and on the other hand significant improvement of the layer homogeneity over large areas.
Firstly, the development of the ALD of IGZO layers will be based on investigations using existing systems and plasma sources to evaluate the principle functionality. In a next step, the new process system will be designed, constructed and built-up.
The layer homogeneity and the electronic and electrical properties of the deposited IGZO layers will be investigated.

Executor:
Chair of Applied physics / sensor technology
Brandenburg University of Technology Cottbus-Senftenberg
K.-Wachsmann-Allee 17
03046 Cottbus

Cooperation partner:
SENTECH Instruments GmbH
Schwarzschildstraße 2
12489 Berlin

Project manager:
Prof. Dr. Dieter Schmeißer (until 31.08.2018)
Dr. Karsten Henkel

Duration:
01.04.2018 - 15.02.2021

Index of advancement:
ZF4510602AG7

Promotional institution:
Federal Ministry for Economic Affairs and Energy in the framework of Central Innovation Programme for SMEs (ZIM)

Keywords:
Atomic layer deposition, transparent conducting oxides, IGZO

Modeling of catalytic fixed bed reactors (BMWi, ZIM, ZF4510601ZG7)

Novel simulation tools for the modeling of catalytic fixed bed reactors

Sub-project:Experimental verification of heterogeneous catalysis on the example of direct CO2 conversion to methan and methanol for the development of a simulation software

Brief description (only in German)
Im Rahmen der Energiewende müssen neue und innovative Konzepte für eine nachhaltige Energiespeicherung und -bereitstellung bei einer gleichzeitigen Lösung des CO2-Problems gefunden werden. Um der Herausforderung der fluktuierenden Verfügbarkeit von erneuerbaren Energien zu begegnen, sind der „Power-to-Gas“-Ansatz mit einer Synthese von Methan, andererseits aber auch der „Power-to-Liquid“- Ansatz mit einer Methanolsynthese hochaktuell. Beide Prozesse beruhen auf dem Einsatz von heterogenen Katalysatoren, deren Performance entscheidend in die Wirtschaftlichkeit der genannten Verfahren eingeht. Bei Verständnis der katalytischen Reaktionen ist eine Optimierung des Umsatzes, der Selektivität und der Ausbeute bei möglichst großer Lebensdauer möglich.

Das Konzept einer direkten Umwandlung der CO2-Komponente aus dem Rauchgas von z.B. Kohlekraftwerken, Raffinerien oder der Zementindustrie wird als neuartige Methode im Projekt untersucht. Die direkte Umwandlung hat den Vorteil, dass die Abtrennung des CO2 entfällt und z.B.  Methanol als flüssige Phase abgetrennt werden kann. Bei der Methanisierung entsteht ein Gasgemisch, welches z. B. in einem Blockheizkraftwerk bei Bedarf wieder in elektrischen Strom umwandelbar ist. Somit würde das Anwendungsfeld für die CO2-Konvertierung zurück in Wertstoffe wie Methan oder Methanol deutlich erweitert.

LOGE Deutschland GmbH entwickelt im Rahmen des Projekts ein Softwaretool zur Modellierung der physikalischen Prozesse und chemischen Reaktionen im Katalysator. Der experimentelle Dateninput und die Verifizierung der Modellierung erfolgt durch den Lehrstuhl Angewandte Physik/Sensorik der BTU Cottbus-Senftenberg. Anhand des so erzielten Verständnisses der zugrundeliegenden Prozesse kann die Optimierung und Hochskalierung der o.g. Verfahren gelingen.

Executor:
Chair of Applied physics / sensor technology
Brandenburg University of Technology Cottbus-Senftenberg
K.-Wachsmann-Allee 17
03046 Cottbus

Cooperation partner:
LOGE Deutschland GmbH
Burger Chaussee 25
03044 Cottbus

Project manager:
Prof. Dr. Dieter Schmeißer (until 31.08.2018)
Dr. Klaus Müller

Duration:
01.04.2018 bis 31.03.2020

Index of advancement:
ZF4510601ZG7

Promotional institution:
Federal Ministry for Economic Affairs and Energy in the framework of Central Innovation Programme for SMEs (ZIM)

Keywords:
heterogeneous catalysis, CO2 conversion, direct CO2 conversion from flue gas, methanation

Photovoltaics - PEALD-Nitride; BMWi, ZIM, 16KN033522)

Process development of plasma enhanced atomic layer deopsition of nitride layers

Sub-project: Spectrsocopic, microscopic, and electrical characterization of PEALD nitride layers

Brief description
The project focuses on the research and development of the plasma enhanced atomic layer deposition (PEALD) of high-quality thin nitride films (AlN, TiN, SiN and GaN). These layers will be deposited on 4" and 8" substrates in a demonstrator ALD system which will be developed during the project.

Firstly, the development will be based on investigations using existing systems and plasma sources to evaluate the principle functionality. In a next step, the new process system will be designed, constructed and built-up.
Metal-organic precursors will be used. Their complex properties and technological manageability will be investigated and the deposited layers will be characterized.

The homogeneity of the layers on 4" and 8" substrates will be determined. The main focus of our works within the project is on spectroscopic, microscopic and electrical characterizations of the PEALD nitride layers deposited in the ALD system developed by SENTECH instruments GmbH.

Executor:
Chair of Applied physics / sensor technology
Brandenburg University of Technology Cottbus-Senftenberg
K.-Wachsmann-Allee 17
03046 Cottbus

Cooperation partner:
Sentech Instruments GmbH
Schwarzschildstraße 2
12489 Berlin

Project manager:
Prof. Dr. Dieter Schmeißer
Dr. Karsten Henkel

Duration:
01.03.2016 bis 28.02.2018

Index of advancement:
16KN033522

Promotional institution:
Federal Ministry for Economic Affairs and Energy in the framework of Central Innovation Programme for SMEs (ZIM)

Keywords:
Atomic layer deposition, nitrides, XPS, XAS, STM, electrical characterization

Functional ALD (DFG, Schm745/31-1)

Fundamental and functional properties of ultra-thin oxide films grown by atomic layer deposition (ALD) studied in-situ by means of surface sensitive techniques (functional ALD, DFG, Schm745/31-1)

Brief description
We perform a systematic in-situ study of fundamental and functional properties of ALD growth using surface sensitive methods. We use ALD on substrates with regularly stepped surfaces held at various temperatures and characterize the occurrence and strength of surface diffusion by means of scanning microscopy. We determine the distribution of ALD nucleating sites as a function of substrate temperature and average terrace width, giving a quantitative estimation of diffusion for understanding its role in ALD. We apply the knowledge gained on regular surfaces to polycrystalline substrates in order to find the experimental conditions for depositing flat films also on complex surfaces. We apply standard ALD procedures to oxide substrates with different oxidation state and crystalline structure and characterise the film growth by means of Synchrotron radiation photoemission and absorption spectroscopy.

Substrate chemistry and structure modify growth and interface features depending on their reactivity towards the ALD precursor. We determine the distinct roles played by oxidation state and crystalline structure of the oxide substrates to tailor interface, substrate and ALD film functionalities upon choice of the appropriate supporting material and ALD parameters.

These studies will be done in-situ, using characterization methods with extreme surface sensitivity. Such a combination, unique at international level, has already proven to clarify unexpected properties of ALD.

Executor:
Department Angewandte Physik/Sensorik
Brandenburg University of Technology Cottbus-Senftenberg
K.-Wachsmann-Allee 17
03046 Cottbus

Project manager:
Prof. Dr. Dieter Schmeißer

Duration:
3 years (till 07.08.2016)

Index of advancement:
SCHM 745/31-1

Promotional institution:
Deutsche Forschungsgemeinschaft (DFG)

Keywords:
ALD, atomic layer deposition, in-situ charavcterization, XPS, XAS, STM

This website uses cookies. There are two types of cookies: The first type supports the basic functionality of our website. The second allows us to improve our content for you by saving and analyzing pseudonymised user data. Since this second type is technically not required to run the website, you can withdraw your consent to those cookies at any time. For more information please visit our pages on data protection.

Mandatory

These cookies are needed for a smooth operation of our website.

Statistic

For statistical reasons, we use the platform Matomo to analyse the user flow with the help of website users‘ pseudonymised data. This allows us to optimize website content.

Name Purpose Lifetime Type Provider
_pk_id Used to store a few details about the user such as the unique visitor ID. 13 months HTML Matomo
_pk_ref Used to store the attribution information, the referrer initially used to visit the website. 6 months HTML Matomo
_pk_ses Short lived cookie used to temporarily store data for the visit. 30 minutes HTML Matomo