Summer School - Forecasts within Energy Markets

Location: Kurhaus Trifels, Annweiler am Trifels

Date: Sep 21 – Sep 25, 2020

The Forecasts within Energy Markets – International Summer School is a five-day intensive, interactive course which provides a profound knowledge on the subject, a cutting edge topic in the current political, economic and scientific discussion. Participants will be taught various forecasting techniques from different scientific areas. These include fundamental market modelling, agent-based modelling, probabilistic and density forecasting, machine learning algorithms and forecast evaluation.

The program delivers theoretical concepts in form of lectures and by hands-on sessions. Students will work in small learning groups on the topics and present their own results on scientific literature research. Completing the course, students will have the skills to apply and combine comprehensive and up-to-date forecasting methods aiming for goals such as optimizing the accuracy in short or long-term price or feed-in forecasting.

Venue: You are invited to the Jugendstilhotel Kurhaus Trifels, a listed historic building equipped with modern technique. Kurhaus Trifels is idyllically situated in the middle of the untouched nature of the Palatinate Forest.

Costs: Registration fee: 270 € per person (four-night accommodation and food included), applicants will be responsible for their own travel arrangements.

Participants: The Summer School is meant to address doctoral students motivated to gain knowledge in the interdisciplinary field of forecasting within the energy markets as well as methodologically interested practitioners holding at least a Master's degree or equivalent.

The summer school will be held in English.

The School

During the training, participants will attend lectures taught by high-level scholars having a proven expertise in their respective fields. The following experts will contribute to the event:

  • Energy System Modelling, Speaker: Professor Felix Müsgens, Chair of Energy Economics at Brandenburg University of Technology Cottbus-Senftenberg
  • Stochastic Modelling, Speaker: Professor Oliver Grothe, Chair for Analytics and Statistics at the Institute for Operations Research at Karlsruhe Institute of Technology
  • Forecast Evaluation, Speaker: Professor Fabian Krüger, Department for Applied Econometrics at Karlsruhe Institute of Technology
  • Agent-based Modelling, Speaker: Professor Anke Weidlich, Department of Sustainable Systems Engineering – INATECH at Albert-Ludwigs-University Freiburg
  • Machine Learning, Speaker: Dr. Mario Hörig, Partner, Oliver Wyman Actuarial Services

Getting a grip on your subject – in addition to teaching methodologies, a hands-on-course on efficient and comprehensive literature surveys will be offered.

Furthermore, the program includes interactive group work and a set of social activities such as a BBQ and a hiking tour through the nature of the Palatinate Forest.

How to apply

Guaranteeing an optimal learning environment, we are only able to accept a limited number of applications. Applicants are asked to send an email to Thomas Möbius (thomas.moebius[at]b-tu.de) and Mira Watermeyer (mira.watermeyer[at]kit.edu) to express their interest to participate and add a short CV. You will receive an answer within three weeks and, in case of acceptance, further information regarding the registration process.

For further information, please visit our website.

Unsere Webseite verwendet Cookies. Diese haben zwei Funktionen: Zum einen sind sie erforderlich für die grundlegende Funktionalität unserer Website. Zum anderen können wir mit Hilfe der Cookies unsere Inhalte für Sie immer weiter verbessern. Hierzu werden pseudonymisierte Daten von Website-Besuchern gesammelt und ausgewertet. Das Einverständnis in die Verwendung der technisch nicht notwendigen Cookies können Sie jeder Zeit wiederrufen. Weitere Informationen erhalten Sie auf unseren Seiten zum Datenschutz.

Erforderlich

Diese Cookies werden für eine reibungslose Funktion unserer Website benötigt.

Statistik

Für den Zweck der Statistik betreiben wir die Plattform Matomo, auf der mittels pseudonymisierter Daten von Websitenutzern der Nutzerfluss analysiert und beurteilt werden kann. Dies gibt uns die Möglichkeit Websiteinhalte zu optimieren.

Name Zweck Ablauf Typ Anbieter
_pk_id Wird verwendet, um ein paar Details über den Benutzer wie die eindeutige Besucher-ID zu speichern. 13 Monate HTML Matomo
_pk_ref Wird benutzt, um die Informationen der Herkunftswebsite des Benutzers zu speichern. 6 Monate HTML Matomo
_pk_ses Kurzzeitiges Cookie, um vorübergehende Daten des Besuchs zu speichern. 30 Minuten HTML Matomo