Module Number:
| 11859
|
Module Title: | Cryptography |
|
Kryptographie
|
Department: |
Faculty 1 - Mathematics, Computer Science, Physics, Electrical Engineering and Information Technology
|
Responsible Staff Member: | -
Prof. Dr. rer. nat. habil Meer, Klaus
-
Prof. Dr. rer. nat. Averkov, Gennadiy
|
Language of Teaching / Examination: | English |
Duration: | 1 semester |
Frequency of Offer: |
Every summer semester
|
Credits: |
8
|
Learning Outcome: | The students should
- know relevant symmetric and asymmetric crypto systems
- understand the mathematics relevant for desgining and analyzing crypto systems
- be able to explain and use the most important approaches to cryptography
- gain the ability to understand state-of-the-art scientific work in the area of cryptography
|
Contents: | - Mathematical Foundations relevant in the context of cryptography, including basic number theory, finite fields, polynomial rings, factorization
- elementary crypto systems
- Symmetric Cryptosystems DES and AES
- public key cryptography, RSA - discrete logarithm, elliptic curve systems
- secure signature and authentication methods
- security of crypto systems
- zero knowledge proofs
- complexity theoretic aspects
|
Recommended Prerequisites: | Basic knowledge about discrete mathematics and linear algebra, for example as covered by the modules
- 11101: Lineare Algebra und analytische Geometrie I
- 11102: Lineare Algebra und analytische Geometrie II
or
- 11112: Mathematik IT-1 (Diskrete Mathematik)
- 11113: Mathematik IT-2 (Lineare Algebra)
|
Mandatory Prerequisites: | None |
Forms of Teaching and Proportion: | -
Lecture
/ 4 Hours per Week per Semester
-
Exercise
/ 2 Hours per Week per Semester
-
Self organised studies
/ 150 Hours
|
Teaching Materials and Literature: | Books in English
- G. Baumslag, B. Fine, M. Kreuzer, G. Rosenberger: A Course in Mathematical Cryptography, De Gruyter, 2015
- J. Hoffstein, J. Pipher, J.H. Silverman: An Introduction to Mathematical Cryptography, 2nd Edition, Springer 2014.
- D.R. Stinson: Cryptography: Theory and Practice, CRC, 1995
Books in German
- V. Diekert, M. Kufleitner, G. Rosenberger: Diskrete Algebraische Methoden, De Gruyter 2013
|
Module Examination: | Prerequisite + Final Module Examination (MAP) |
Assessment Mode for Module Examination: | Prerequisite:
- Successful completion of homework (fortnightly) and/or successful completion of tests (approx. 4 tests of 15-30 minutes each, written during the lecture period)
Final module examination:
- Written examination, 90 minutes, OR
- Oral examination, 30 - 45 minutes, (in case of a small number of participants)
In the first lecture it will be anounced, if the examination will be offered in written or oral form. |
Evaluation of Module Examination: | Performance Verification – graded |
Limited Number of Participants: | 80 |
Part of the Study Programme: | -
Master (research-oriented) /
Angewandte Mathematik /
PO 2008
-
Master (research-oriented) /
Angewandte Mathematik /
PO 2019
-
Master (research-oriented) /
Artificial Intelligence /
PO 2022
-
Abschluss im Ausland /
Cyber Security /
keine PO
-
Master (research-oriented) /
Cyber Security /
PO 2017
-
Abschluss im Ausland /
Informatik /
keine PO
-
Bachelor (research-oriented) /
Informatik /
PO 2008
- 1. SÄ 2017
-
Master (research-oriented) /
Informatik /
PO 2008
- 2. SÄ 2017
-
Master (research-oriented) /
Informations- und Medientechnik /
PO 2017
-
Bachelor (research-oriented) /
Mathematik /
PO 2023
-
Bachelor (research-oriented) - Co-Op Programme with Practical Placement /
Mathematik - dual /
PO 2023
-
Master (research-oriented) /
Physics /
PO 2021
-
Bachelor (research-oriented) /
Wirtschaftsmathematik /
PO 2007
-
Bachelor (research-oriented) /
Wirtschaftsmathematik /
PO 2023
-
Bachelor (research-oriented) - Co-Op Programme with Practical Placement /
Wirtschaftsmathematik - dual /
PO 2023
|
Remarks: | - Study programme Cyber Security M.Sc.: Mandatory module in complex „Cyber Security Basics“
- Study programme Informatik M.Sc.: Compulsory elective module in complex „Mathematik“ or in field of application „Mathematik“
- Study programme Artificial Intelligence M.Sc.: Compulsory elective module in complex „Advanced Methods“
- Study programme Angewandte Mathematik M.Sc.: Compulsory elective module in complex „Analysis / Algebra / Kombinatorik“
- Study programme Mathematik B.Sc.: Compulsory elective module in complex „Vertiefung“, in limited extend
- Study programme Wirtschaftsmathematik B.Sc.: Compulsory elective module in complex „Vertiefung“, in limited extend
- Study programme Physics M. Sc.: Compulsory elective module in complex „Minor Subject
|
Module Components: | - Lecture: Cryptography
- Accompanying exercises
- Related examination
|
Components to be offered in the Current Semester: | |