| Module Number: | 13911 | 
| Module Title: | Algebra: Structures and Algorithms | 
|  | Algebra: Strukturen und Algorithmen | 
| Department: | Faculty 1 - Mathematics, Computer Science, Physics, Electrical Engineering and Information Technology | 
| Responsible Staff Member: | 
																					Prof. Dr. rer. nat. Averkov, Gennadiy
							
 | 
| Language of Teaching / Examination: | English | 
| Duration: | 1 semester | 
| Frequency of Offer: | On special announcement | 
| Credits: | 6 | 
| Learning Outcome: | After successfully completing the module, students are able to work with basic algebraic concepts and know basic algebraic facts and constructions. They are able to use this knowledge to solve algebraic problems, with our without the assistance of computer-algebra systems. Students understand the basic algebraic algorithmic machinery of computational algebra. | 
| Contents: | Commutative rings and ideals Affine varietiesGroebner basis and the Hilbert basis theorem Elimination of variables with Groebner bases and resultsants Hilbert's Nullstellensatz Selected applications (e.g. global optimization, solution of kinematic problems, automated theory proving)
 | 
| Recommended Prerequisites: | Knowledge of the content of the modules 
 or11101: Lineare Algebra und analytische Geometrie I
 
 11112: Mathematik IT-1 (Diskrete Mathematik), and11113: Mathematik IT-2 (Lineare Algebra)
 | 
| Mandatory Prerequisites: | None | 
| Forms of Teaching and Proportion: | 
											 Lecture
					
								
															 / 3 Hours per Week per Semester
									
											 Exercise
					
								
															 / 1 Hours per Week per Semester
									
											 Self organised studies
					
								
															 / 120 Hours
									
 | 
| Teaching Materials and Literature: | D. Cox, J. Little, and D. O’Shea: Ideals, Varieties, and Algorithms–An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer Publishing Company, 2010D. Cox, J. Little, and D. O’Shea: Using Algebraic Geometry, Springer Publishing Company, 2005S. Lang: Algebra, Springer Publishing Company, 2002
 | 
| Module Examination: | Final Module Examination (MAP) | 
| Assessment Mode for Module Examination: | Final module examination: 
 In the first lecture it will introduced, if the examination will organized in written or oral form.Written examination, 90 min. OROral examination, 30 - 45 min. (with small number of participants)
 | 
| Evaluation of Module Examination: | Performance Verification – graded | 
| Limited Number of Participants: | None | 
| Part of the Study Programme: | 
										
																																	Master (research-oriented) / 
																Angewandte Mathematik /
										PO 2019
					- 1. SÄ 2021
				
										
																																	Master (research-oriented) / 
																Artificial Intelligence /
										PO 2022
					- 1. SÄ 2024
				
										
																																	Master (research-oriented) / 
																Cyber Security /
										PO 2017
					- 1. SÄ 2024
				
										
																																	Bachelor (research-oriented) / 
																Informatik /
										PO 2008
					- 2. SÄ 2024
				
										
																																	Master (research-oriented) / 
																Informatik /
										PO 2008
					- 3. SÄ 2024
				
										
																																	Master (research-oriented) / 
																Mathematical Data Science /
										PO 2025
					 
				
										
																																	Master (research-oriented) / 
																Mathematics /
										PO 2025
					 
				
										
																																	Bachelor (research-oriented) / 
																Wirtschaftsmathematik /
										PO 2023
					 
				
										
																																	Bachelor (research-oriented) - Co-Op Programme with Practical Placement / 
																Wirtschaftsmathematik - dual /
										PO 2023
					 
				
 | 
| Remarks: | Study programme Angewandte Mathematik M.Sc.: Compulsory elective module in complex „Analysis / Algebra / Kombinatorik“Studiengang Mathematics M.Sc.: Wahlpflichtmodul im Komplex „Analysis / Algebra / Combinatorics“Studiengang Mathematical Data Science M.Sc.: Wahlpflichtmodul im Komplex „Advanced Mathematical Methods in Data Science“Study programme Mathematik B.Sc.: Compulsory elective module in complex „Vertiefung“, in limited extend Study programme Wirtschaftsmathematik B.Sc.: Compulsory elective module in complex „Vertiefung“, in limited extendStudy programme Artificial Intelligence M.Sc.: Compulsory elective module in complex  „Advanded Methods“Study programme Informatik B.Sc.: Compulsory elective module in „Praktische Mathematik" or in field of application „Mathematics"Study programme Informatik M.Sc.: Compulsory elective module in „Mathematik" or in field of application „Mathematik"Study programme Cyber Security M.Sc.: Compulsory elective module in complex  „Computer Science“
 | 
| Module Components: | Lecture Algebra: Structures and Algorithms, with integrated exerciseRelated examination
 | 
| Components to be offered in the Current Semester: |  |