Module Number:
| 14272
|
Module Title: | Special Topics of Analysis |
|
Spezielle Kapitel der Analysis
|
Department: |
Faculty 1 - Mathematics, Computer Science, Physics, Electrical Engineering and Information Technology
|
Responsible Staff Member: | -
Prof. Dr. rer. nat. habil. Hauer, Daniel
|
Language of Teaching / Examination: | English |
Duration: | 1 semester |
Frequency of Offer: |
On special announcement
|
Credits: |
8
|
Learning Outcome: | After successfully completing the module, students are familiar with problems and the current state of knowledge in differential geometry, calculus of variations, optimal control and minimal surfaces. |
Contents: | - Studies of curves, surfaces, and manifolds: Fundamental forms and curvatures, Inner geometry and bending problems for surfaces, Theorem of Gauss-Bonnet, Isothermal parameters
- Minimal surfaces and Plateau's problem, Bernstein's theorem, Geodesics and the exponential mapping, H-surface
- Fermat's problem, 2-dimensional Riemannian geometry, an outlook on the n-dimensional Riemann space
- Solution of variational and optimization problems, Direct and indirect methods, Duality theory, Regularity theory, Extremal problems, Optimal control theory
|
Recommended Prerequisites: | Knowledge of the content of the modules
- 11103: Analysis I
- 11104: Analysis II
- 11201: Analysis III
|
Mandatory Prerequisites: | None |
Forms of Teaching and Proportion: | -
Lecture
/ 4 Hours per Week per Semester
-
Exercise
/ 2 Hours per Week per Semester
-
Self organised studies
/ 150 Hours
|
Teaching Materials and Literature: | - U. Dierkes, S. Hildebrandt, F. Sauvigny: Minimal Surfaces, Grundlehren der mathematischen Wissenschaften, Band 339, Springer-Verlag, 2010
- Ioffe, A.D. and V.M. Tichomirov: Theorie der Extremalaufgaben, Deutscher Verlag der Wissenschaften, 1979.
- W. Klingenberg: Eine Vorlesung über Differentialgeometrie., Springer, Berlin, 1973.
|
Module Examination: | Final Module Examination (MAP) |
Assessment Mode for Module Examination: | - Oral examination, 60 minutes
|
Evaluation of Module Examination: | Performance Verification – graded |
Limited Number of Participants: | None |
Part of the Study Programme: | |
Remarks: | - Study programme Mathematics M.Sc.: Compulsory elective module in complex „Analysis / Algebra / Combinatorics“
- Study programme Mathematik B.Sc.: Compulsory elective module in complex „Vertiefung“, in limited extend
- Study programme Wirtschaftmathematik B.Sc.: Compulsory elective module in complex „Vertiefung“, in limited extend
|
Module Components: | - Lecture: Special Topics of Analysis
- Accompanying exercise
- Related examination
|
Components to be offered in the Current Semester: | |