14496 - Applied Biostatistics for environmental data Modulübersicht

Module Number: 14496
Module Title:Applied Biostatistics for environmental data
  Angewandte Biostatistik für Umweltdaten
Department: Faculty 2 - Environment and Natural Sciences
Responsible Staff Member:
  • Dr. Djoudi, El Aziz
Language of Teaching / Examination:English
Duration:1 semester
Frequency of Offer: Every summer semester
Credits: 6
Learning Outcome:This module will provides a theoretical introduction to data analysis and results interpretation, statistical methods and tools for environmental and biological  sciences, as well as applied tools with a particular focus on R programming (R software).
Contents:Part 1. Introduction to experimental design
            Design principles
            Random sampling, block design, nested design, split-plot…
            Replication and Pseudoreplication
Part 2. Introduction to R
            Introduction to the essentials of R
            Basics: Syntax, packages, writing codes & functions
            Data handling, analysis and visualisation (graphs and tables)
            Exercises
Part 3. Distributions, Parameters and Estimators
            Data classification & distribution
            Measures of central tendency: mean, median …
            Measures of variability: variance and standard deviation
            Likelihood and Akaike Information Criterion
            Exercises
Part 4. Univariate analysis
            T-test and ANOVA (Analysis of variance)
            Correlation and regression analysis
            Non parametric analysis (Wilcoxon, Mann-Witney-U, Kruskal-Wallis)
            linear models & introduction to mixed models
            Exercises
Part 5. Multivariate analysis
            Principal component analysis (PCA)
            Non-metric multidimensional scaling (NMDS)
            Redundancy analysis (RDA) & Canonical correspondence analysis (CCA)
            Exercises
Recommended Prerequisites:none
Mandatory Prerequisites:none
Forms of Teaching and Proportion:
  • Lecture / 2 Hours per Week per Semester
  • Exercise / 2 Hours per Week per Semester
  • Self organised studies / 120 Hours
Teaching Materials and Literature:Zuur, A. F., Ieno, E. N. & Smith, G. M. 2007 Analysing ecological data. New York
Gotelli, N. J. & Ellison A. M. 2013 A primer of ecological statistics. Sunderland
Dormann, C. 2020 Environmental Data Analysis: An Introduction with Examples in R. Cham
Lakicevic, M., Povak, N. & Reynolds, K. M. 2020 Introduction to R for terrestrial ecology: basics of numerical analysis, mapping, statistical tests and advanced application of R, Cham
Wilke C.O. 2019 Fundamentals of Data Visualization, O’Reilly
Wickham H& Grolemund G, 2017 R for Data Science, O’Reilly
Module Examination:Continuous Assessment (MCA)
Assessment Mode for Module Examination:- 10 Exercises during the courses (50%))
- Individual project presentation, 15 min. (50%)
Evaluation of Module Examination:Performance Verification – graded
Limited Number of Participants:25
Part of the Study Programme:
  • Bachelor (research-oriented) / Environmental and Resource Management / PO 2015
  • Master (research-oriented) / Environmental and Resource Management / PO 2021
  • Master (research-oriented) - Double Degree / Environmental and Resource Management / PO 2021
Remarks:Please bring your laptop!
Module Components:240740 Lecture/Exercise: Applied Biostatistics for environmental data
Components to be offered in the Current Semester: