14500 - Evolution Equations - Nonlinear Semigroups Modulübersicht

Module Number: 14500
Module Title:Evolution Equations - Nonlinear Semigroups
  Evolutionsgleichungen - Nichtlineare Halbgruppen
Department: Faculty 1 - Mathematics, Computer Science, Physics, Electrical Engineering and Information Technology
Responsible Staff Member:
  • Prof. Dr. rer. nat. habil. Hauer, Daniel
Language of Teaching / Examination:English
Duration:1 semester
Frequency of Offer: On special announcement
Credits: 8
Learning Outcome:After successfully completing the module, students have extensive knowledge of functional analytical methods for solving non-linear evolution equations and their regularity.
Contents:
  • Geometry of Banach spaces
  • Accretive operators
  • Existence of semigroups
  • Regularisation effect of solutions to gradient systems
  • Abstract Sobolev and Gagliardo-Nirenberg inequalities
  • L1-L Regularisation effect
Recommended Prerequisites:Knowledge of the content of the modules
  • 11103: Analysis I
  • 11104: Analysis II
  • 11201: Analysis III
  • 11303: Funktionalanalysis oder 13844: Functional Analysis
Mandatory Prerequisites:None
Forms of Teaching and Proportion:
  • Lecture / 4 Hours per Week per Semester
  • Exercise / 2 Hours per Week per Semester
  • Self organised studies / 150 Hours
Teaching Materials and Literature:
  • E. Emmrich, Gewöhnliche und Operator-Differentialgleichungen, Eine integrierte Einführung in Randwertprobleme und Evolutionsgleichungen für Studierende, Vieweg+Teubner Verlag Wiesbaden, 2004.
  • H.W. Alt, Linear Funktionalanalysis, Eine anwendungsorientierte Einführung, Springer Berlin, Heidelberg, 2012.
  • V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics, 2010.
  • Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, AMS, Mathematical Surveys and Monographs, Vol. 49, 1997.
Module Examination:Final Module Examination (MAP)
Assessment Mode for Module Examination:
  • Oral examination, 30 min.
Evaluation of Module Examination:Performance Verification – graded
Limited Number of Participants:None
Part of the Study Programme:
  • Master (research-oriented) / Angewandte Mathematik / PO 2019
Remarks:
  • Study programme Angewandte Mathematik M.Sc.: Compulsory elective module in complex „Analysis / Algebra / Kombinatorik“
Module Components:
  • Lecture: Nonlinear Semigroups
  • Accompanying exercises
  • Related examination
Components to be offered in the Current Semester: