11427 - Optimierung mit Lipschitzfunktionen Modulübersicht
| Modulnummer: | 11427 - Modul nicht mehr im Angebot ab SS 2010 |
| Modultitel: | Optimierung mit Lipschitzfunktionen |
| Optimization with Lipschitz Functions | |
| Einrichtung: | Fakultät 1 - Mathematik, Naturwissenschaften und Informatik |
| Verantwortlich: |
|
| Lehr- und Prüfungssprache: | Deutsch |
| Dauer: | 1 Semester |
| Angebotsturnus: | sporadisch nach Ankündigung |
| Leistungspunkte: | 6 |
| Lernziele: | Die Vorlesung bietet eine Einführung in ein modernes Teilgebiet der nichtglatten Optimierung. |
| Inhalte: | Eigenschaften von Lipschitzfunktionen, Clarke-Kalkül, Fortsetzungssätze für Lipschitzfunktionen und ihre Anwendungen auf Variationsprobleme |
| Empfohlene Voraussetzungen: | Kenntnis des Stoffes von: Analysis I -- III Vorkenntnisse in Funktionalanalysis und Variationsrechnung sind wünschenswert, aber nicht Vorbedingung. |
| Zwingende Voraussetzungen: | keine |
| Lehrformen und Arbeitsumfang: |
|
| Unterrichtsmaterialien und Literaturhinweise: | [1] Clarke, F. H.: Optimization and Nonsmooth Analysis. SIAM; Philadelphia 1990 [2] Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer; Berlin etc. 2007, 2. Aufl. |
| Modulprüfung: | Keine Angabe - Angabe ab Wintersemester 2016/17 erforderlich! |
| Prüfungsleistung/en für Modulprüfung: | mündliche Prüfung am Ende des Semesters |
| Bewertung der Modulprüfung: | Prüfungsleistung - benotet |
| Teilnehmerbeschränkung: | keine |
| Zuordnung zu Studiengängen: |
|
| Bemerkungen: | keine |
| Veranstaltungen zum Modul: | keine |
| Veranstaltungen im aktuellen Semester: |
|
