Grüner Wasserstoff für die Energiespeicherung

Neuartige Elektrodenmaterialien sollen die effiziente Wasserstoffherstellung aus regenerativen Energiequellen preiswerter machen

Am 1. Juli 2017 startete das Verbund-Forschungsvorhaben „Neuartige poröse 3D-Elektrodenmaterialien zur effizienteren alkalischen Wasserelektrolyse (AEL3D)“ an der BTU Cottbus-Senftenberg. Das Bundesministerium für Wirtschaft und Energie (BMWi) fördert das dreijährige Projekt mit einem Gesamtbudget von rund 2,5 Mio. €. Der Lehrstuhl Kraftwerkstechnik von Prof. Dr.-Ing. Hans-Joachim Krautz ist mit einem Fördervolumen von 819.000 € beteiligt.

Im Mittelpunkt der Forschungen steht die Weiterentwicklung der alkalischen Elektrolyse als eine der wichtigen Technologien für die großtechnische Erzeugung von Wasserstoff aus regenerativen Energiequellen (sogenannter „grüner Wasserstoff“). Hier fokussiert das Projekt auf eine, auch für das Land Brandenburg außerordentlich wichtige Langzeit-Energiespeichertechnologie.

Im Verbundvorhaben sollen neuartige poröse, dreidimensionale Elektrodenmaterialien entwickelt und anwendungsbezogen charakterisiert werden. Diese sollen zudem auf ihre Eignung als hocheffiziente Elektrodenwerkstoffe und somit als eine der Schlüsselkomponenten für die alkalische Elektrolyse untersucht werden.

Neben der Erforschung der elektrokatalytischen und strömungstechnischen Eigenschaften wird auch die Entwicklung innovativer, durchströmbarer Elektrodenformen und Zellarchitekturen einbezogen. Auf diese Weise werden die effektiven Stromdichten bei gezielter Gasabfuhr und niedrigen Überspannungen deutlich erhöht. Im Ergebnis kann „grüner Wasserstoff“ billiger und effizienter aus regenerativem Strom hergestellt werden.

Hierbei ist es Aufgabe der BTU-Wissenschaftlerinnen und Wissenschaftler am Wasserstoff- und Speicher-Forschungszentrum unter Leitung von Dr. Ulrich Fischer unter anderem Teststände mit erweiterten Messmöglichkeiten für die Präqualifizierung der neuartigen Elektroden und Zellgeometrien zu entwickeln und einzusetzen. Die leistungsfähigsten Elektroden werden im technischen Maßstab am 60-bar-Druckelektrolyseur des Wasserstoffzentrums unter realen Betriebsbedingungen getestet.

Im Projektkonsortium arbeiten renommierte Forschungseinrichtungen aus dem Bereich der Wasserstoff- und Energietechnologie sowie der Materialwissenschaft zusammen. Zu ihnen gehören neben der Brandenburgischen Technischen Universität das Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (IFAM, Institutsteil Dresden), das Zentrum für Sonnenenergie- und Wasserstoff-Forschung Ulm und die Technischen Universität Berlin. Das Konsortium wird durch einen Industriebeirat ergänzt, der sich aus namhaften Elektrolyseherstellern, Anlagenbauern, Zulieferern und Endanwendern zusammensetzt. Auf diese Weise wird ein hohes wirtschaftliches Verwertungspotenzial sichergestellt.

Hintergrund

Wasserstoff wird einen maßgeblichen Anteil am Gelingen der Energiewende in Deutschland haben. Als chemischer Energieträger ist er geeignet, große volkswirtschaftlich relevante Energiemengen zu speichern. Gleichzeitig ermöglicht er die Kopplung zu anderen Energie-Sektoren, wie beispielsweise dem Verkehr. Damit steht das Projekt im Kontext des Regierungsprogramms Wasserstoff und Brennstoffzellentechnologie (2016-2026), in dessen Rahmen eine klimaneutrale und emissionsfreie Wasserstoffmobilität und der Ausbau einer Wasserstoffinfrastruktur eine zentrale Rolle spielen.

Mit den neuen Forschungsaufgaben wird die erfolgreiche Arbeit in dem unter Konsortialführerschaft der BTU durchgeführten Verbundvorhaben „Wissenschaftliche Forschung zu Windwasserstoff-Energiespeichern – WESpe“ im Rahmen der Energiespeicher-Forschungsinitiative des Bundes sowie dem vom Land Brandenburg geförderten Projekt „AEL-MALFE - Alkalische Elektrolyse - Membranelektrolyse mit anionen-leitfähigem Festelektrolyt“ am Wasserstoff- und Speicher-Forschungszentrum fortgesetzt.

Fachkontakt

Dr. rer. nat. Ulrich Fischer
Kraftwerkstechnik
T 4050
ulrich.fischer(at)b-tu.de

Pressekontakt

Benedikt Stahl
Stabsstelle Kommunikation und Marketing
T 2115
benedikt.stahl(at)b-tu.de
Wasserstoff-Entwicklung an Nickelschaum-Elektrode

Unsere Webseite verwendet Cookies. Diese haben zwei Funktionen: Zum einen sind sie erforderlich für die grundlegende Funktionalität unserer Website. Zum anderen können wir mit Hilfe der Cookies unsere Inhalte für Sie immer weiter verbessern. Hierzu werden pseudonymisierte Daten von Website-Besuchern gesammelt und ausgewertet. Das Einverständnis in die Verwendung der technisch nicht notwendigen Cookies können Sie jeder Zeit wiederrufen. Weitere Informationen erhalten Sie auf unseren Seiten zum Datenschutz.

Erforderlich

Diese Cookies werden für eine reibungslose Funktion unserer Website benötigt.

Statistik

Für den Zweck der Statistik betreiben wir die Plattform Matomo, auf der mittels pseudonymisierter Daten von Websitenutzern der Nutzerfluss analysiert und beurteilt werden kann. Dies gibt uns die Möglichkeit Websiteinhalte zu optimieren.

Name Zweck Ablauf Typ Anbieter
_pk_id Wird verwendet, um ein paar Details über den Benutzer wie die eindeutige Besucher-ID zu speichern. 13 Monate HTML Matomo
_pk_ref Wird benutzt, um die Informationen der Herkunftswebsite des Benutzers zu speichern. 6 Monate HTML Matomo
_pk_ses Kurzzeitiges Cookie, um vorübergehende Daten des Besuchs zu speichern. 30 Minuten HTML Matomo