Univ.-Prof. Dr. Lars Röntzsch

Chair of Thermal Energy Technology
Head of Hydrogen Research Center at BTU

Building FZ3E, Room 0.20
Siemens-Halske-Ring 13
03046 Cottbus | GERMANY
P +49 355 69 45 01
Lars.Roentzsch(at)b-tu.de

Currivulum Vitae

Further information:

Publications:

[79]S. Jana, L. Röntzsch, Numerical modelling and performance projection of a dual-stage metal hydride operated hydrogen compressor, submitted (2025).
[78]N. P. Sakkas, F. Gillung, K. Thummar, R. Abang, L. Röntzsch, Advanced pressurized alkaline water electrolysis at high temperatures up to 130 °C, submitted (2025).
[77]K. Danila, P. Kunz, L. Röntzsch, Dynamic operation of low-temperature electrolyzer systems in modular large-scale chemical plants, Chemie Ingenieur Technik, in print (2025). DOI: 10.1002/cite.202400140
[76]S. Jana, P. Muthukumar, L. Röntzsch, Transient analysis and performance prediction of metal hydride based thermal energy storage system with integrated cooling and heat recuperation, submitted (2024).
[75]A. Reimann, P. Kohlenbach, L. Röntzsch, C. Schneider, Development and validation of a quasi-2D electrolysis stack model with a focus on dynamic thermal behavior, International Jour­nal of Hydrogen Energy, vol. 118, pp. 457–471 (2025). DOI: 10.1016/j.ijhydene.2025.03.225
[74]P. Sharma, L. Röntzsch, V. K. Shahia, Advancements towards optimization of metal–organic framework-based polymer electrolyte membranes for aqueous redox flow batteries, Journal of Materials Chemistry A (2025). DOI: 10.1039/D4TA08720H
[73]S. K. Sampangi, L. Röntzsch, Electrolysis – Proton exchange membrane water electrolysis: State-of-the-art technique and systems, in J. Reedijk (Ed.) Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, ISBN 978-0-12-409547-2, Elsevier, 2024. DOI: 10.1016/B978-0-323-96022-9.00237-1
[72]A. Reimann, P. Kohlenbach, L. Röntzsch, Development of a novel quasi-2D PEM Electrolyzer Model in Modelica, Proceedings of the 15th International Modelica Conference, Aachen, 9-11 October 2023, Linköping University Electronic Press, 2023. DOI: 10.3384/ecp20463
[71]S. Metz, T. Smolinka, C. I. Bernäcker, S. Loos, T. Rauscher, L. Röntzsch, M. Arnold, M. Jahn, M. Kusnezoff, G. Kolb, U.-P. Apfel, C. Doetsch, Producing hydrogen through electrolysis and other processes, in R. Neuge­bauer (Ed.): Hydrogen Technologies, Berlin, Springer Vieweg, 2023, ISBN 9783031162961. DOI: 10.1007/978-3-031-22100-2_9
[70]Ö. Akay, A. Bashkatov, E. Coy, K. Eckert, K. E. Einarsrud, A. Friedrich, B. Kimmel, S. Loos, G. Mutschke, L. Röntzsch, M. D. Symes, X. Yang, K. Brinkert, Electrolysis in Reduced Gravitational Environments: Current Research Perspectives and Future Applications, npj Microgravity, vol. 8, article no. 56 (2022). DOI: 10.1038/s41526-022-00239-y
[69]N. Kardjilov, A. Hilger, H. Markötter, A. Griesche, R. Woracek, F. Heubner, L. Röntzsch, M. Grosse, I. Manke, J. Banhart, Quantification of hydrogen in metals applying neutron imaging techniques, Microscopy and Micro­analysis, vol. 28 (Suppl. 1), pp. 1666 (2022). DOI: 10.1017/S1431927622006638
[68]C. I. Bernäcker, T. Gimpel, A. Bomm, T. Rauscher, S. Mauermann, M. Li, E. G. Hübner, W. Schade, L. Röntzsch, Short pulse laser structuring as a scalable process to produce electrodes for large alkaline water electrolyzers, Journal of Power Sources, vol. 538, pp. 231572 (2022). DOI: 10.1016/j.jpowsour.2022.231572
[67]S. Metz, T. Smolinka, C. I. Bernäcker, S. Loos, T. Rauscher, L. Röntzsch, M. Arnold, M. Jahn, M. Kusnezoff, G. Kolb, U.-P. Apfel, C. Doetsch, Wasserstofferzeugung durch Elektrolyse und weitere Verfahren, in R. Neuge­bauer (Ed.): Wasserstofftechnologien, Berlin, Springer Vieweg, 2022, ISBN 9783662645116. DOI: 10.1007/978-3-662-64939-8_9
[66]F. Foroughi, C. I. Bernäcker, L. Röntzsch, B. G. Pollet, Understanding the Effects of Ultrasound (408 kHz) on the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) on Raney-Ni in Alkaline Media, Ultrasonics Sonochemistry, vol. 84, pp. 105979 (2022). DOI: 10.1016/j.ultsonch.2022.105979
[65]C. I. Bernäcker, S. Loos, T. Rauscher, T. Weißgärber, B. Kieback, L. Röntzsch, Pulvermetallurgie zur Her­stel­lung von Elektroden für Power-to-X-Anwendungen, pp. 147–157 in C. Broeckmann, H. Danninger, T. Weißgärber (Eds.): Pulvermetallurgie – Nachhaltige Lösungen und neue Märkte, Proceedings of the 39th Hagener Sympo­sium, Heimdall-Verlag, Witten, 2021, ISBN 9783946537700.
[64]M. Vogt, F. Heubner, T. Weißgärber, L. Röntzsch, Nachhaltige Wasserstoff-on-demand-Lösung — Gesteuerte Hydrolysereaktion zur ubiquitären Wasserstoffversorgung, HZwei (ISSN: 1862-393X), vol. 20 (4), pp. 28–30 (2020).
[63]R. Baumann, T. Rauscher, C. I. Bernäcker, C. Zwahr, T. Weißgärber, L. Röntzsch, A. F. Lasagni, Laser Structu­ring of Open Cell Metal Foams for Micro Scale Surface Enlargement, Journal of Laser Micro/Nano­engineering, vol. 15, pp. 132–138 (2020). DOI: 10.2961/jlmn.2020.02.2010
[62]F. Heubner, T. Weißgärber, L. Röntzsch, Solid Hydrogen Carriers als H2-Speicher, HZwei (ISSN: 1862-393X), vol. 20 (2), pp. 26–29 (2020).
[61]H. A. Miller, K. Bouzek, J. Hnát, S. Loos, C. I. Bernäcker, T. Weißgärber, L. Röntzsch, J. Meier-Haack, Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions, Sustainable Energy & Fuels, vol. 4, pp. 2114–2133 (2020). DOI: 10.1039/C9SE01240K
[60]L. Röntzsch, F. Heubner, S. Mauermann, T. Weißgärber, B. Kieback, Fortschrittliche Metallhydrid-Werkstoffe für die Wasserstofftechnologie, pp. 245–262 in H. Danninger, L. Sigl, M. Schneider (Eds.): Pulvermetallurgie – Schlüsseltechnologie für innovative Systemlösungen, Proceedings of the 38th Hagener Symposium, Heimdall-Verlag, Witten, 2019, ISBN 9783946537656.
[59]T. Rauscher, C. I. Bernäcker, S. Loos, M. Vogt, B. Kieback, L. Röntzsch, Spark-Plasma-Sintered Porous Elec­trodes for Efficient Oxygen Evolution in Alkaline Water Electrolysis, Electrochimica Acta, vol. 317, pp. 128–138 (2019). DOI: 10.1016/j.electacta.2019.05.102
[58]M. Ďurovič, J. Hnát, C. I. Müller, T. Rauscher, L. Röntzsch, M. Paidar, K. Bouzek, Nanocrystalline Fe60Co20Si10B10 as a cathode catalyst for alkaline water electrolysis: Impact of a surface activation, Electrochimica Acta, vol. 306, pp. 688–697 (2019). DOI: 10.1016/j.electacta.2019.03.107
[57]C. I. Bernäcker, T. Rauscher, T. Büttner, B. Kieback, L. Röntzsch, A powder metallurgy route to produce Raney-Ni electrodes for alkaline water electrolysis, Journal of The Electrochemical Society, vol. 166, pp. F357–F363 (2019).
DOI: 10.1149/2.0851904jes
[56]T. Rauscher, C. I. Bernäcker, U. Mühle, B. Kieback, L. Röntzsch, The effect of Fe as constituent in Ni-base alloys on the oxygen evolution reaction in alkaline solutions at high current densities, International Jour­nal of Hydrogen Energy, vol. 44, pp. 6392–6402 (2019). DOI: 10.1016/j.ijhydene.2019.01.182
[55]F. Heubner, A. Hilger, N. Kardjilov, I. Manke, B. Kieback, Ł. Gondek, J. Banhart, L. Röntzsch, In operando stress measurement and neutron imaging of metalhydride composites for solid-state hydrogen storage, Journal of Power Sources, vol. 397, pp. 262–270 (2018). DOI: 10.1016/j.jpowsour.2018.06.093
[54]A. Gabler, C. I. Müller, T. Rauscher, T. Gimpel, R. Hahn, M. Köhring, B. Kieback, L. Röntzsch, W. Schade, Ultrashort-pulse laser structured titanium surfaces with sputter-coated platinum catalyst as hydrogen evolution electrodes for alkaline water electrolysis, International Jour­nal of Hydrogen Energy, vol. 43, pp. 7216–7226 (2018). DOI: 10.1016/j.ijhydene.2018.02.130
[53]T. Rauscher, C. I. Müller, A. Gabler, T. Gimpel, M. Köhring, B. Kieback, W. Schade, L. Röntzsch, Femtosecond-laser structuring of Ni electrodes for highly active hydrogen evolution, Electrochimica Acta, vol. 247, pp. 1130–1139 (2017). DOI: 10.1016/j.electacta.2017.07.074
[52]A. Gabler, C. I. Müller, T. Rauscher, M. Köhring, B. Kieback, L. Röntzsch, W. Schade, Ultrashort pulse laser-structured nickel surfaces as hydrogen evolution electrodes for alkaline water electrolysis, International Journal of Hydrogen Energy, vol. 42, pp. 10826–10833 (2017). DOI: 10.1016/j.ijhydene.2017.02.006
[51]F. Heubner, S. Mauermann, B. Kieback, L. Röntzsch, Stress development of metal hydride composites for high density hydrogen storage applications, Journal of Alloys and Compounds, vol. 705, pp. 176–182 (2017). DOI: 10.1016/j.jallcom.2017.02.113
[50]M. Tegel, S. Schöne, B. Kieback, L. Röntzsch, An efficient hydrolysis of MgH2-based materials, International Jour­nal of Hydrogen Energy, vol. 42, pp. 2167–2176 (2017). DOI: 10.1016/j.ijhydene.2016.09.084
[49]I. Bürger, M. Dieterich, C. Pohlmann, L. Röntzsch, M. Linder, Standardized hydrogen storage module with high utilization factor based on metal hydride-graphite composites, Journal of Power Sources, vol. 342, pp. 970–979 (2017). DOI: 10.1016/j.jpowsour.2016.12.108
[48]C. Cremers, L. Röntzsch, Brennstoffzellen als Range-Extender, pp. 85–89, in R. Neugebauer (Ed.): Ressourcen­effizienz, Springer Vieweg, Berlin, 2017, ISBN 9783662528884. DOI: 10.1007/978-3-662-52889-1
[47]A. Goldberg, C. Pohlmann, L. Röntzsch, C. Freitag, A. T. Tagne Saha, S. Ziesche, U. Partsch, Highly efficient and long-term stable micro fuel cell system based on ceramic multilayer technology, 6th Electronic System-Integration Technology Conference (ESTC), Grenoble, France, pp. 1–6 (2016). DOI: 10.1109/estc.2016.7764494
[46]M. Tegel, L. Röntzsch, PowerPaste für mobile und autarke Brennstoffzellen, HZwei (ISSN: 1862-393X), vol. 16 (4), pp. 35–37 (2016).
[45]T. Rauscher, C. I. Müller, A. Schmidt, B. Kieback, L. Röntzsch, Ni-Mo-B alloys as cathode material for alkaline water electrolysis, International Jour­nal of Hydrogen Energy, vol. 41, pp. 2165–2176 (2016). DOI: 10.1016/j.ijhydene.2015.12.132
[44]C. I. Müller, K. Sellschopp, M. Tegel, T. Rauscher, B. Kieback, L. Röntzsch, The activity of amorphous iron-based alloys as electrode materials for the hydrogen evolution reaction, Journal of Power Sources, vol. 304, pp. 196–206 (2016). DOI: 10.1016/j.jpowsour.2015.11.008
[43]M. Dieterich, C. Pohlmann, I. Bürger, M. Linder, L. Röntzsch, Long-term cycle stability of metal hydride-graphite composites, International Jour­nal of Hydrogen Energy, vol. 46, pp. 16375–16392 (2015). DOI: 10.1016/j.ijhydene.2015.09.013
[42]F. Heubner, C. Pohlmann, S. Mauermann, B. Kieback, L. Röntzsch, Mechanical stresses originating from metal hydride composites during cyclic hydrogenation, International Jour­nal of Hydrogen Energy, vol. 40, pp. 10123–10130 (2015). DOI: 10.1016/j.ijhydene.2015.06.053
[41]K. Herbrig, C. Pohlmann, Ł. Gondek, H. Figiel, N. Kardjilov, A. Hilger, I. Manke, J. Banhart, B. Kieback, L. Röntzsch, Investigations of the structural stability of metal hydride composites by in-situ neutron imaging, Journal of Power Sources, vol. 293, pp. 109–118 (2015). DOI: 10.1016/j.jpowsour.2015.05.039
[40]C. Pohlmann, K. Herbrig, Ł. Gondek, N. Kardjilov, A. Hilger, H. Figiel, J. Banhart, B. Kieback, I. Manke, L. Röntzsch, In operando visualization of hydride-graphite composites during cyclic hydrogenation by high-resolution neutron imaging, Journal of Power Sources, vol. 277, pp. 360–369 (2015). DOI: 10.1016/j.jpowsour.2014.12.011
[39]J. Fu, M. Tegel, B. Kieback, L. Röntzsch, Dehydrogenation properties of doped LiAlH4 compacts for hydrogen generator applications, International Jour­nal of Hydrogen Energy, vol. 39, pp. 16362–16371 (2014). DOI: 10.1016/j.ijhydene.2014.08.023
[38]J. Gluch, S. Niese, L. Röntzsch, E. Zschech, X-ray microscopy and tomography of hydrogen storage materials, Microscopy and Microanalysis, vol. 20, suppl. 3, pp. 1568–1569 (2014). DOI: 10.1017/s143192761400957x
[37]C. I. Müller, T. Rauscher, A. Schmidt, T. Schubert, T. Weißgärber, B. Kieback, L. Röntzsch, Electrochemical investigations on amorphous Fe-base alloys for alkaline water electrolysis, International Jour­nal of Hydrogen Energy, vol. 39, pp. 8926–8937 (2014). DOI: 10.1016/j.ijhydene.2014.03.151
[36]C. Pohlmann, B. Kieback, L. Röntzsch, Composite materials of melt-spun Mg90Ni10 and graphite: Micro­structural changes during cyclic hydrogenation and the impact on gas and heat transport characteristics, International Jour­nal of Hydrogen Energy, vol. 39, pp. 8331–8339 (2014). DOI: 10.1016/j.ijhydene.2014.03.163
[35]J. Gluch, S. Niese, C. Jung, L. Röntzsch, E. Zschech, B. Kieback, Electron and X-ray tomo­graphy of iron/iron oxide redox reactions for large-scale hydrogen storage, Microscopy and Microanalysis, vol. 19, suppl. 2, pp. 578–579 (2013). DOI: 10.1017/s1431927613004881
[34]K. Herbrig, L. Röntzsch, C. Pohlmann, T. Weißgärber, B. Kieback, Hydrogen storage systems based on hydride-graphite composites: Computer simulation and experimental validation, International Journal of Hydrogen Energy, vol. 38, pp. 7026–7036 (2013). DOI: 10.1016/j.ijhydene.2013.03.104
[33]C. Pohlmann, T. Hutsch, L. Röntzsch, T. Weißgärber, B. Kieback, Novel approach for thermal diffusivity measurements in inert atmosphere using the flash-method, Journal of Ther­mal Analysis and Calorimetry, vol. 114, pp. 629–634 (2013). DOI: 10.1007/s10973-013-3048-9
[32]C. Pohlmann, L. Röntzsch, F. Heubner, T. Weißgärber, B. Kieback, Solid-state hydrogen storage in Hydralloy-graphite composites, Journal of Power Sources, vol. 231, pp. 97–105 (2013). DOI: 10.1016/j.jpowsour.2012.12.044
[31]C. Pohlmann, L. Röntzsch, T. Weißgärber, B. Kieback, Heat and gas transport properties in pelletized hydride–graphite composites for hydrogen storage applications, International Jour­nal of Hydrogen Energy, vol. 38, pp. 1685–1691 (2013). DOI: 10.1016/j.ijhydene.2012.09.159
[30]A. Schmidt, T. Schubert, L. Röntzsch, T. Weißgärber, B. Kieback, Rapidly solidified Fe-base alloys as elec­trode materials for water electrolysis, International Journal of Materials Research, vol. 103, pp. 1155–1158 (2012). DOI: 10.3139/146.110804
[29]J. Fu, L. Röntzsch, T. Schmidt, M. Tegel, T. Weißgärber, B. Kieback, Comparative study on the de­hydro­gena­tion properties of TiCl4-doped LiAlH4 using different doping tech­niques, International Journal of Hydrogen Energy, vol. 37, pp. 13387–13392, (2012). DOI: 10.1016/j.ijhydene.2012.06.009
[28]M. E. Toimil-Molares, L. Röntzsch, W. Sigle, K. H. Heinig, C. Trautmann, R. Neumann, Pipetting nanowires: In situ visualization of solid-state nanowire-to-nanoparticle trans­formation driven by surface diffusion-mediated capillarity, Advanced Functional Materials, vol. 22, pp. 695–701 (2012). DOI: 10.1002/adfm.201102260
[27]J. Fu, L. Röntzsch, T. Schmidt, T. Weißgärber, B. Kieback, Improved dehydrogenation pro­perties of lithium alanate (LiAlH4) doped by low energy grinding, Journal of Alloys and Com­pounds, vol. 525, pp. 73–77 (2012). DOI: 10.1016/j.jallcom.2012.02.076
[26]E. D. Koultoukis, S. S. Makridis, L. Röntzsch, E. Pavlidou, A. Ioannidou, E. S. Kikkinides, A. K. Stubos, Struc­tural, microchemistry, and hydrogenation properties of TiMn0.4Fe0.2V0.4, TiMn0.1Fe0.2V0.7 and Ti0.4Zr0.6Mn0.4Fe0.2V0.4 metal hydrides, Journal of Nanoscience and Nano­technology, vol. 12, pp. 4688–4696 (2012). DOI: 10.1166/jnn.2012.4901
[25]C. Pohlmann, L. Röntzsch, J. J. Hu, T. Weißgärber, B. Kieback, M. Fichtner, Tailored heat transfer charac­teristics of pelletized LiNH2–MgH2 and NaAlH4 hydrogen storage materials, Journal of Power Sources, vol. 205, pp. 173–179 (2012). DOI: 10.1016/j.jpowsour.2012.01.064
[24]T. Schmidt, L. Röntzsch, T. Weißgärber, B. Kieback, Influence of transition metal dopants and temperature on the dehydrogenation and rehydrogenation kinetics of NaAlH4, Inter­na­tio­nal Journal of Hydrogen Energy, vol. 37, pp. 4194–4200 (2012). DOI: 10.1016/j.ijhydene.2011.11.139
[23]S. Kalinichenka, L. Röntzsch, T. Riedl, T. Weißgärber, B. Kieback, Hydrogen storage pro­perties and microstructure of melt-spun Mg90Ni8RE2 (RE = Y, Nd, Gd), International Journal of Hydrogen Energy, vol. 36, pp. 10808–10815 (2011). DOI: 10.1016/j.ijhydene.2011.05.147
[22]S. Kalinichenka, L. Röntzsch, T. Riedl, T. Gemming, T. Weißgärber, B. Kieback, Micro­structure and hydrogen storage properties of melt-spun Mg-Cu-Ni-Y alloys, International Journal of Hydrogen Energy, vol. 36, pp. 1592–1600 (2011). DOI: 10.1016/j.ijhydene.2010.10.099
[21]C. Pohlmann, L. Röntzsch, S. Kalinichenka, T. Hutsch, T. Weißgärber, B. Kieback, Hydrogen storage properties of compacts of melt-spun Mg90Ni10 flakes and expanded natural graphite, Journal of Alloys and Compounds, vol. 509, pp. S625–S628 (2011). DOI: 10.1016/j.jallcom.2010.11.060
[20]S. Kalinichenka, L. Röntzsch, C. Baehtz, T. Weißgärber, B. Kieback, Hydrogen desorption properties of melt-spun and hydrogenated Mg-based alloys using in situ synchrotron X-ray diffraction and TGA, Journal of Alloys and Compounds, vol. 509, pp. S629–S632 (2011). DOI: 10.1016/j.jallcom.2010.10.067
[19]T. Schmidt, L. Röntzsch, T. Weißgärber, B. Kieback, Reversible hydrogen storage in Ti–Zr-codoped NaAlH4 under realistic operation conditions: Part 2, Journal of Alloys and Com­pounds, vol. 509, pp. S740–S742 (2011). DOI: 10.1016/j.jallcom.2010.10.183
[18]L. Röntzsch, T. Schmidt, S. Kalinichenka, B. Kieback, Hydrogen storage in melt-spun nano­crystalline Mg-Ni-Y alloys, pp. 159–163 in D. Stolten, T. Grube (Eds.): 18th World Hydrogen Energy Conference 2010 - WHEC 2010, Parallel Sessions Book 4: Storage Systems / Policy Perspectives, Initiatives and Cooperations, Forschungs­zentrum Jülich, 2010, ISBN 9783893366545.
[17]C. Pohlmann, L. Röntzsch, S. Kalinichenka, T. Hutsch, B. Kieback, Magnesium alloy-gra­phite composites with tailored heat conduction properties for hydrogen storage appli­ca­tions, International Journal of Hydrogen Energy, vol. 35, pp. 12829–12836 (2010). DOI: 10.1016/j.ijhydene.2010.08.104
[16]T. Schmidt, L. Röntzsch, Reversible hydrogen storage in Ti-Zr-codoped NaAlH4 under realistic operation con­ditions, Journal of Alloys and Compounds, vol. 496, pp. L38–L40 (2010). DOI: 10.1016/j.jallcom.2010.02.162
[15]S. Kalinichenka, L. Röntzsch, C. Baehtz, B. Kieback, Hydrogen desorption kinetics of melt-spun and hydro­genated Mg90Ni10 and Mg80Ni10Y10 using in situ synchrotron, X-ray diffraction and thermogravimetry, Journal of Alloys and Compounds, vol. 496, pp. 608–613 (2010). DOI: 10.1016/j.jallcom.2010.02.128
[14]L. Röntzsch, T. Schmidt, S. Kalinichenka, C. Pohlmann, A. Schmidt, T. Weißgärber, B. Kieback, Wasserstoff­speicherung in nanoskaligen Feststoffen, pp. 41–56 in H. Kolaska (Ed.): Energie- und Ressourceneffizienz durch Pulvermetallurgie, Proceedings of the 28th Hagener Symposium, Heimdall-Verlag, Witten, 2009, ISBN 978939935391.
[13]L. Röntzsch, S. Kalinichenka, B. Kieback, Microstructure and de-/hydrogenation behavior of melt-spun Mg-Ni-Y alloys as hydrogen storage materials, pp. 1085–1090 in K.U. Kainer (Ed.): Magnesium. Proceedings of the 8th International Conference on Magnesium Alloys and their Applications, Wiley-VCH, Weinheim, 2009, ISBN 9783527327324.
[12]T. Schmidt, L. Röntzsch, S. Kalinichenka, J. Meinert, B. Kieback, Entwicklung reversibler Wasserstoff­speicher­systeme auf Basis nanostrukturierter Metallhydride, Chemie Ingenieur Technik, vol. 81, p. 1136 (2009). DOI: 10.1002/cite.200950012
[11]S. Kalinichenka, L. Röntzsch, B. Kieback, Structural and hydrogen storage properties of melt-spun Mg–Ni–Y alloys, International Journal of Hydrogen Energy, vol. 34, pp. 7749–7755 (2009). DOI: 10.1016/j.ijhydene.2009.07.053
[10]L. Röntzsch, Shape evolution of nanostructures by thermal and ion beam processing, Wissenschaftlich-technische Berichte des Forschungszentrums Dresden-Rossendorf, FZR-488, 2008, 176 pages. Online: urn:nbn:de:bsz:14-ds-1199973604526-36322
[9]L. Röntzsch, K. H. Heinig, J. A. Schuller, M. L. Brongersma, Thin film patterning by surface-plasmon-induced thermo­capillarity, Applied Physics Letters, vol. 90, pp. 044105/1–3 (2007). DOI: 10.1063/1.2432282
[8]B. Schmidt, K. H. Heinig, L. Röntzsch, K. H. Stegemann, Nanocluster memories by ion beam synthesis of Si in SiO2, Materials Science-Poland, vol. 25, pp. 1213–1222 (2007). Online: materialsscience.pwr.wroc.pl/bi/vol25no4/articles/ms_29_2007_155schm.pdf
[7]B. Schmidt, A. Mücklich, L. Röntzsch, K. H. Heinig, How do high energy heavy ions shape Ge nanoparticles embedded in SiO2?, Nuclear Instruments and Methods in Physics Research B, vol. 257, pp. 30–32 (2007). DOI: 10.1016/j.nimb.2006.12.152
[6]L. Röntzsch, K. H. Heinig, B. Schmidt, A. Mücklich, Experimental evidence of Si nanocluster d-layer formation in the vicinity of ion-irradiated SiO2-Si interfaces, Nuclear Instruments and Methods in Physics Research B, vol. 242, pp. 149–151 (2006). DOI: 10.1016/j.nimb.2005.08.012
[5]B. Schmidt, K. H. Heinig, L. Röntzsch, T. Müller, K. H. Stegemann, E. Votintseva, Ion irra­diation through SiO2/Si interfaces: Non-conventional fabrication of Si nanocrystals for memory applications, Nuclear Instru­ments and Methods in Physics Research B, vol. 242, pp. 146–148 (2006). DOI: 10.1016/j.nimb.2005.08.011
[4]L. Röntzsch, K. H. Heinig, B. Schmidt, A. Mücklich, W. Möller, J. Thomas, T. Gemming, Direct evidence of self-aligned Si nanocrystals formed by ion irradiation of Si/SiO2 interfaces, physica status solidi A, vol. 202, pp. R170–R172 (2005). DOI: 10.1002/pssa.200521399
[3]L. Röntzsch, K. H. Heinig, Reaction pathways of ion beam synthesis and stability of mono­crystalline nano­wires, pp. 165–169 in P. Pödör et al. (Eds.): Proceedings Int. Workshop on Semicond. Nanocrystals, Vol. 1, Budapest, Hungary, 2005, ISBN 9637371184.
[2]L. Röntzsch, K. H. Heinig, B. Schmidt, Experimental evidence of Si nanocluster d-layer for­ma­tion in buried and thin SiO2 films induced by ion irradiation, Materials Science in Semi­conductor Processing, vol. 7, pp. 357–362 (2004). DOI: 10.1016/j.mssp.2004.09.098
[1]L. Röntzsch, Self-organization of nanocluster delta-layers at ion-beam-mixed Si-SiO2 inter­faces, Wissen­schaftlich-technische Berichte des Forschungszentrums Rossendorf, FZR-392, 2003, 91 pages. Online: urn:nbn:de:bsz:d120-qucosa-29001

Patents:

[14]C. I. Bernäcker, T. Büttner, G. Walther, L. Röntzsch, T. Rauscher, S. Loos, N. Eissmann, A. Tillmann, S. Eckstein, S. Amthor, N. Minar, Metallkörper sowie Verfahren zum Herstellen des Metallkörpers, DE102022214303 (A1), WO2024133737 (A1), 2024. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102022214303A1
[13]S. Ziesche, A. Goldberg, L. Röntzsch, M. Vogt, Flexibles System zur Erzeugung elektrischer Energie, Vorrichtung zur Abgabe elektrischer Energie, Verfahren zur Herstellung des flexiblen Systems sowie Verwendungen hiervon, DE102020205970 (B3), EP4150691 (A1), WO2021228897 (A1), 2021. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102020205970B3
[12]L. Röntzsch, F. Heubner, Wasserstoffspeicherbehälter, DE102020204214 (B3), EP3889103 (A1), 2021. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102020204214B3
[11]L. Röntzsch, C. I. Bernäcker, System zur Bereitstellung und Abgabe von zumindest nahezu reinem Sauerstoff, DE102020205213 (A1), 2021. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102020205213A1
[10]C. I. Bernäcker, L. Röntzsch, Vorrichtung zur elektrochemischen Separation von Sauerstoff und/oder zur Erhöhung des Sauerstoffpartialdrucks in einem Gasgemisch, DE102020207427 (A1), 2021. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102020207427A1
[9]C. I. Bernäcker, L. Röntzsch, S. Loos, T. Rauscher, S. Mauermann, J. Scholz, T. Büttner, L. Hofmann, M. Ostafin, Verfahren zur Herstellung einer Metallsubstrat-Katalysator-Einheit sowie deren Verwendung, DE102020204747 (A1), 2021. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102020204747A1
[8]C. I. Bernäcker, L. Röntzsch, S. Loos, S. Scheitz, O. Kunze, T. Rauscher, Verfahren zur Ausbildung einer katalytisch wirksamen Schicht auf einer Oberfläche einer Membran, die Bestandteil einer Elektroden-Membran-Einheit einer elektrochemischen Zelle ist, DE102020208003 (A1), 2021. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102020208003A1
[7]L. Röntzsch, B. Kieback, M. Dieterich, I. Bürger, C. Pohlmann, Speicherelement für Gase, DE102015213061 (A1), EP3118511 (A1), EP3118511 (B1), 2017. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102015213061A1
[6]M. Tegel, L. Röntzsch, B. Kieback, Kompositmaterial zur hydrolytischen Erzeugung von Wasserstoff, Vorrichtung zur hydrolytischen Erzeugung von Wasserstoff, Verfahren zur Erzeugung von Wasserstoff, Vorrichtung zur Erzeugung von elektrischer Energie sowie Verwendungsmöglichkeiten, DE102014211422 (A1), EP3154900 (A1), EP3154900 (B1), ES2717532 (T3), US10239753 (B2), US2017107101 (A1), WO2015189247 (A1), 2015. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102014211422A1
[5]C. Pohlmann, L. Röntzsch, B. Kieback, H. Felix, Messeinrichtung und Verfahren zur Bestimmung der Menge eines in einem Speicher aufgenommenen Gases an einem porösen Speichermaterial, DE102015100584 (B3), EP3045910 (A1), EP3045910 (B1), ES2776379 (T3), 2015. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102015100584B3
[4]M. Tegel, L. Röntzsch, T. Weißgärber, B. Kieback, Verfahren zur Wiedergewinnung von Neodym oder Neodymoxid aus einem Ausgangsgemisch, DE102012017418 (A1), DE102012017418 (B4), WO2014033004 (A1), 2014. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102012017418A1
[3]M. Tegel, L. Röntzsch, B. Kieback, Kompositmaterial, Vorrichtung sowie Verfahren zur hydrolytischen Erzeugung von Wasserstoff sowie Vorrichtung zur Erzeugung von elektrischer Energie und Verwendungsmöglichkeiten, DE102013211106 (A1), EP3008012 (A1), EP3008012 (B1), ES2909103 (T3), WO2014198948 (A1), 2014. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102013211106A1
[2]T. Schmidt, L. Röntzsch, Verfahren zur Freisetzung von Wasserstoff aus einem Metallhydrid, DE102011115073 (A1), 2013. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102011115073A1
[1]G. Stephani, L. Röntzsch, B. Kieback, J. Kunze, W. Hungerbach, Reversibles Wasserstoffspeicherelement und Verfahren zu seiner Befüllung und Entleerung, DE102007038779 (A1), DE102007038779 (B4), WO2009018821 (A2), WO2009018821 (A3), 2009. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&CC=DE&NR=102007038779A1