Zeitschriften

Rakhi, H. Schmidt (2018). One-dimensional turbulence modeling of incompressible temporally developing turbulent boundary layer with comparison to DNS, Journal of Turbulence (submitted)

J. A. Medina, H. Schmidt, D. Lignell (2018). Application of One-Dimensional Turbulence to incompressible channel and pipe-flow, Theoretical and Computational Fluid Dynamics (submitted)

Glawe et al. (2018). IMEX based Multi-Scale Time Advancement in ODTLES, Zeitschrift für angewandte Mathematik und Mechanik, DOI: 10.1002/zamm.201800098

 D. Lignell, V. B. Lansinger, J. Medina, M. Klein, A. R. Kerstein, H. Schmidt, M. Fistler, M. Oevermann (2017). One-dimensional turbulence modeling for cylindrical and spherical flows: model formulation and application, Theoretical and Computational Fluid Dynamics, 32, 495-520

J. A. Medina M., H. Schmidt, F. Mauss, Z. Jozefik (2018). Constant volume n-Heptane autoignition using One-Dimensional Turbulence, Combustion and Flame, 190, 388-401

M. Fragner, H. Schmidt (2017). Investigating Asymptotic Suction Boundary Layers using a One-Dimensional Stochastic Turbulence Model, Journal of Turbulence, 18, 899-928

A. Movaghar, M. Linne, M. Oevermann, F. Meiselbach, H. Schmidt, Alan R. Kerstein (2017). Numerical investigation of turbulent-jet primary breakup using One-Dimensional Turbulence, International Journal of Multiphase Flow, 89, 241–254

Z. Jozefik, A. R. Kerstein, H. Schmidt (2016). Simulation of shock–turbulence interaction in non-reactive flow and in turbulent deflagration and detonation regimes using one-dimensional turbulence, Combustion and Flame, 164, 53-67

Glawe, C., Schmidt, H., Kerstein, A.R., Klein, R. (2015). XLES Part I: Introduction to Extended Large Eddy Simulation, submitted to the Journal of Computational Physics

Glawe, C., Schmidt, H., Kerstein, A.R., Klein, R. (2015). XLES Part II: From Extended Large Eddy Simulation to ODTLES, submitted to the Journal of Computational Physics

Z. Jozefik, A. R. Kerstein, H. Schmidt, S. Lyra, H. Kolla, J. H. Chen (2015). One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS, Combustion and Flame,  62, 2999-3015

Dietze, E., Mellado, J.P., Stevens, B., Schmidt, H. (2015). Controlling entrainment in stratocumulus clouds using level set-based front tracking, Meteorologische Zeitschrift, 23, 661-674

Mellado, J.P., Stevens, B., Schmidt, H. (2014). Wind shear and buoyancy reversal at the stratocumulus top, Journal of Atmospheric Sciences, 71, 1040-1057

F. Schulz, C. Glawe, H. Schmidt, A. R. Kerstein (2013). Toward modeling of CO2 multi-phase flow patterns using a stochastic multi-scale approach, Submitted to Environmental Earth Sciences, 70, pp 3739-3748

Schmidt, H., Kerstein, A.R., Nédélec, R., Wunsch, S., Sayler, B. J. (2013).
Numerical simulation of a laboratory analog of radiatively induced cloud-
top entrainment, Theoretical and Computational Fluid Dynamics, 27, 377-395

E. Dietze,  J.P. Mellado,  B. Stevens,  H. Schmidt, Study of low-order numerical effects in the two-dimensional cloud-top mixing layer, Theoretical Computational Fluid Dynamics, 27, 377-395

C. Jiménez, J. Quinard, J. Graña-Otero, H. Schmidt, G. Searby, Unsteady response of hydrogen and methane flames to pressure waves, Combustion and Flame, 159, 1894-1908

Probability density functions in the cloud-top mixing layer
New Journal of Physics, 12, 085010
J.P. Mellado, B. Stevens, H. Schmidt, N. Peters

Numerical study of the direct pressure effect of acoustic waves in planar premixed flames
Combustion and Flame, 157, 1610-1619
H. Schmidt, C. Jiménez

Two-fluid formulation of the cloud-top mixing layer for direct numerical simulation
Theor. Comput. Fluid Dyn. (2010) 24, 511–536, DOI 10.1007/s00162-010-0182-x
J.P. Mellado, B. Stevens, H. Schmidt, N. Peters

J.P. Mellado, B. Stevens, H. Schmidt, N. Peters (2009). Buoyancy reversal in cloud-top mixing layers, Quarterly Journal of the Royal Meteorological Society, 135, 963-978

Moeck, J., Oevermann, M., Paschereit, O. C., Klein, R., Schmidt, H. (2008).
A two-way coupling for modeling thermoacoustic instabilities in a flat flame
Rijke tube, Proc. Combust. Inst., 32, 1199-1207

HCCI combustion modeling using detailed chemistry coupled to LEM-based advection
Combustion and Flame, 155, 370-379
M. Oevermann, H. Schmidt, A.R. Kerstein

Unsere Webseite verwendet Cookies. Diese haben zwei Funktionen: Zum einen sind sie erforderlich für die grundlegende Funktionalität unserer Website. Zum anderen können wir mit Hilfe der Cookies unsere Inhalte für Sie immer weiter verbessern. Hierzu werden pseudonymisierte Daten von Website-Besuchern gesammelt und ausgewertet. Das Einverständnis in die Verwendung der technisch nicht notwendigen Cookies können Sie jeder Zeit wiederrufen. Weitere Informationen erhalten Sie auf unseren Seiten zum Datenschutz.

Erforderlich

Diese Cookies werden für eine reibungslose Funktion unserer Website benötigt.

Statistik

Für den Zweck der Statistik betreiben wir die Plattform Matomo, auf der mittels pseudonymisierter Daten von Websitenutzern der Nutzerfluss analysiert und beurteilt werden kann. Dies gibt uns die Möglichkeit Websiteinhalte zu optimieren.

Name Zweck Ablauf Typ Anbieter
_pk_id Wird verwendet, um ein paar Details über den Benutzer wie die eindeutige Besucher-ID zu speichern. 13 Monate HTML Matomo
_pk_ref Wird benutzt, um die Informationen der Herkunftswebsite des Benutzers zu speichern. 6 Monate HTML Matomo
_pk_ses Kurzzeitiges Cookie, um vorübergehende Daten des Besuchs zu speichern. 30 Minuten HTML Matomo