Topology planning for gas networks

Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active
settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner.

Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we develop a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered.

Partners

  • Zuse Institute Berlin.

Further academic partners

  • WIAS Berlin
  • HU Berlin
  • TU Braunschwei,
  • Uni Duisburg-Essen
  • FAU Erlangen
  • LUH Hannover

INDUSTRIAL PARTNER / FUNDING
Open Grid Europe GmbH, Essen.

Related talks

  1. Gemischt-ganzzahlige nichtlineare Optimierungsprobleme in zwei Transportanwendungen, Universität Ulm, Germany, 29.10.2012.
  2. Mixed-Integer Nonlinear Optimization Problems in Transportation Applications, RWTH Aachen, Germany, 21.5.2012.
  3. Mathematische Optimierung – Grundlagen und Anwendungen in der Energiewirtschaft, GASAG Summerschool, Berlin, Germany, 20.6.2011.
  4. Gemischt-ganzzahlige nichtlineare Optimierungsprobleme in zwei Transportanwendungen, Helmut-Schmidt-Universität - Universität der Bundeswehr, Hamburg, Germany, 31.5.2011.
  5. Gas Network Topology Optimization for Upcoming Market Requirements, 8th International Conference on the European Energy Market, Zagreb, Croatia, 26.5.2011.
  6. Input Data for Gas Network Optimization, Workshop ForNe, Nuremberg, Germany, 11.5.2011.
  7. Gas Network Topology Optimization, Workshop ForNe, Hannover, Germany, 21.1.2011.
  8. Gas Network Topology Optimization, Workshop ForNe, Berlin, Germany, 27.10.2010.
  9. Topology Planning for Natural Gas Networks, ECMI 2010, Wuppertal, Germany, 30.7.2010.
  10. Mathematische Optimierung – Grundlagen und Anwendungen in der Energiewirtschaft, GASAG Summerschool, Berlin, Germany, 2.7.2010.
  11. Gas Network Topology Optimization, Workshop ForNe, Essen, Germany, 18.5.2010.
  12. Gas Network Topology Optimization – From Small to Real-World Instances, Workshop ForNe, Duisburg, Germany, 3.2.2010.
  13. Gas Network Topology Optimization – Reducing the Computational Complexity, Workshop ForNe, Darmstadt, Germany, 3.11.2009.
  14. Nonlinear Models for Stationary Gas Network Flow and Topology Optimization, Workshop ForNe, Darmstadt, Germany, 15.5.2009.

Related publications

  1. Armin Fügenschuh, Björn Geißler, Ralf Gollmer, Antonio Morsi, Marc E. Pfetsch, Jessica Rövekamp, Martin Schmidt, Klaus Spreckelsen, Marc C. Steinbach, Physical and technical fundamentals of gas networks. In: T. Koch, B. Hiller, M. Pfetsch, L. Schewe (Eds.), Evaluating Gas Network Capacities, SIAM, Philadelphia, pp. 17-44, 2015.
  2. Jesco Humpola, Armin Fügenschuh, Benjamin Hiller, Thorsten Koch, Thomas Lehmann, Ralf Lenz, Robert Schwarz, Jonas Schweiger, The specialized MINLP approach. In: T. Koch, B. Hiller, M. Pfetsch, L. Schewe (Eds.), Evaluating Gas Network Capacities, SIAM, Philadelphia, pp. 123-144, 2015.
  3. Jesco Humpola, Armin Fügenschuh, Thorsten Koch, A New Class of Valid Inequalities for Nonlinear Network Design Problems , OR Spectrum, in print. (Also available as ZIB Technical Report ZR-13-06 , 2013.)
  4. Jesco Humpola, Armin Fügenschuh, Thomas Lehmann, A Primal Heuristic for Optimizing the Topology of Gas Networks based on Dual Information , EURO Journal on Computational Optimization, Vol. 3, No. 1, pp. 53 – 78, 2015. (Also available as ZIB Technical Report ZR-13-49 , 2013.)
  5. Marc Pfetsch, Armin Fügenschuh, Björn Geißler, Nina Geißler, Ralf Gollmer, Benjamin Hiller, Jesco Humpola, Thorsten Koch, Thomas Lehmann, Alexander Martin, Antonio Morsi, Jessica Rövekamp, Lars Schewe, Martin Schmidt, Rüdiger Schultz, Robert Schwarz, Jonas Schweiger, Claudia Stangl, Marc Steinbach, Stefan Vigerske, Bernhard Willert, Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions , Optimization Methods and Software, Vol. 30, No. 1, pp. 15 – 53, 2015. (Also available as ZIB Technical Report ZR-12-41 , 2012.)
  6. Armin Fügenschuh, Björn Geißler, Ralf Gollmer, Christine Hayn, René Henrion, Benjamin Hiller, Jesco Humpola, Thorsten Koch, Thomas Lehmann, Alexander Martin, Radoslava Mirkov, Antonio Morsi, Jessica Rövekamp, Lars Schewe, Martin Schmidt, Rüdiger Schultz, Robert Schwarz, Jonas Schweiger, Claudia Stangl, Marc Steinbach, Bernhard Willert, Mathematical Optimization for Challenging Network Planning Problems in Unbundled Liberalized Gas Markets , Energy Systems, Vol. 5, No. 3, pp. 449 – 473, 2014. (Also available as ZIB Technical Report ZR-13-13 , 2013.)
  7. Armin Fügenschuh, Jesco Humpola, A Unified View on Relaxations for a Nonlinear Network Flow Problem , ZIB Technical Report ZR-13-31, 2013.
  8. Armin Fügenschuh, Benjamin Hiller, Jesco Humpola, Thorsten Koch, Thomas Lehmann, Robert Schwarz, Jonas Schweiger, Jácint Szabó, Gas Network Topology Optimization for Upcoming Market Requirements , International Conference on the European Energy Markets (EEM 11), pp. 346 – 351, 2011.
  9. Armin Fügenschuh, Gastransport - Eine Herausforderung für die Mathematik , ZIB Jahresbericht 2010, pp. 60 – 63, 2011.
  10. Armin Fügenschuh, Henning Homfeld, Hanno Schülldorf, Stefan Vigerske, Mixed-Integer Nonlinear Problems in Transportation Applications , Hélder Rodrigues et al. (Eds.), Proceedings of the 2nd International Conference on Engineering Optimization (+CD-rom), ISBN 978-989-96264-3-0, 2010.
  11. Armin Fügenschuh, Björn Geißler, Alexander Martin, Antonio Morsi, The Transport PDE and Mixed-Integer Linear Programming , Cynthia Barnhart, Uwe Clausen, Ulrich Lauther, Rolf H. Möhring (Eds.), Dagstuhl Seminar Proceedings 09261, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Deutschland, 2009.