Adversarial Machine Learning

Course Description:

In this study project the participants will acquire practical skills in the application of machine learning (ML) techniques in the area of IT security in adversarial settings. The field of ML is playing an ever increasing role in computer science in general and IT security in particular. The idea of the project is to mount traffic analysis attack on the encrypted and anonymized connections. To this end, students will develop scripts to automate fetching of different websites from a web browser while applying various privacy enhancing techniques (e.g., VPN, SSH tunnel, Tor network). By doing so, they will collect traces of encrypted data that will be further used for feature engineering and extraction, training and testing of different machine learning techniques. Finally, students will analyze the results in the form of different quality metrics and will write a report and present the results.

In the form of a self organized study project the participants get familiar and/or deepen their knowledge in machine learning, especially support vector machines and their applications to traffic analysis. The participants get deep insights in the state of the art research in traffic analysis and apply the existing knowledge to build, test, and evaluate their own website fingerprinting attack.

Please enroll here for the moodle course.

Time Table:

DayTimeRoom
Wednesday15:30 - 17:00VG 1C/0.03
Wednesday17:30 - 19:00VG 1C/0.03

Unsere Webseite verwendet Cookies. Diese haben zwei Funktionen: Zum einen sind sie erforderlich für die grundlegende Funktionalität unserer Website. Zum anderen können wir mit Hilfe der Cookies unsere Inhalte für Sie immer weiter verbessern. Hierzu werden pseudonymisierte Daten von Website-Besuchern gesammelt und ausgewertet. Das Einverständnis in die Verwendung der technisch nicht notwendigen Cookies können Sie jeder Zeit wiederrufen. Weitere Informationen erhalten Sie auf unseren Seiten zum Datenschutz.

Erforderlich

Diese Cookies werden für eine reibungslose Funktion unserer Website benötigt.

Statistik

Für den Zweck der Statistik betreiben wir die Plattform Matomo, auf der mittels pseudonymisierter Daten von Websitenutzern der Nutzerfluss analysiert und beurteilt werden kann. Dies gibt uns die Möglichkeit Websiteinhalte zu optimieren.

Name Zweck Ablauf Typ Anbieter
_pk_id Wird verwendet, um ein paar Details über den Benutzer wie die eindeutige Besucher-ID zu speichern. 13 Monate HTML Matomo
_pk_ref Wird benutzt, um die Informationen der Herkunftswebsite des Benutzers zu speichern. 6 Monate HTML Matomo
_pk_ses Kurzzeitiges Cookie, um vorübergehende Daten des Besuchs zu speichern. 30 Minuten HTML Matomo