Fault tolerant middleware idioms based on self-stabilizing algorithms in wireless sensor networks.

  • Duration: October 2011 to February 2017
  • Funding: DFG-Project
  • Partner: Prof. Thurau, Institut für Telematik, TU Hamburg-Harburg

Wireless sensor network applications are inherently difficult to develop due to their tight integration into the physical world, scarce resources and notoriously unreliable radio communication that frequently lead to transient faults. This combined with the long-lasting unattended operation mode is an enormous challenge.

This research project pursues the goal of furnishing essential operations of wireless sensor networks with fault tolerance based on self-stabilizing algorithms and thus to lay foundation for a permanent and uninterrupted operation of these networks. The project will be based on two fundamental assumptions. Firstly, fault tolerance is not an add-on to an existing middleware, but a recurrent theme throughout the design of the software infrastructure that glues together all components. Secondly, fault tolerance must be a self-organizing property.

The latter assumption demands for a highly decentralized mode of operation. The project will substantiate the claim that the employment of self-stabilizing algorithms will bring about the same degree of fault tolerance, as this can be achieved with state of the art middleware platforms. We will evidence that with the new approach the consumption of resources is considerably reduced and that adaption to new types of errors is an inherent feature. The quantitative analysis of these claims will be carried out through a comparison of existing middleware platforms and a prototypical implementation of our approach.

The anticipated results will considerably enhance the field of fault tolerance for wireless sensor networks. At the end of the project new algorithms and new methodologies will be available to bring this type of network closer to real world applications.


This website uses cookies. Those have two functions: On the one hand they are providing basic functionality for this website. On the other hand they allow us to improve our content for you by saving and analyzing anonymized user data. You can redraw your consent to using these cookies at any time. Find more information regarding cookies on our Data Protection Declaration and regarding us on the Imprint.


These cookies are needed for a smooth operation of our website.


Name Purpose Lifetime Type Provider
_pk_id Used to store a few details about the user such as the unique visitor ID. 13 months HTML Matomo
_pk_ref Used to store the attribution information, the referrer initially used to visit the website. 6 months HTML Matomo
_pk_ses Short lived cookie used to temporarily store data for the visit. 30 minutes HTML Matomo