Cryptography Sommersemester 2019 / Summer term 2019

LectureTuesday  09:15-10:45HG 0.18Prof. Dr. Meer
LectureThursday  13:45 - 15:15HG 0.19Prof. Dr. Meer
ExerciseFriday  13:45 - 15:15HG 2.44A. Naif, M.Sc.


Written Re-examination: 23 March 2020 (Monday)
                                          ZHG, SR 1
                                          10:00 - 11:30 a. m.

Students have to register for the re-examination.

Allowed auxiliary resources:
One handwritten sheet of paper (two-sided, DIN-A4),
nothing else (no computers, iPads, Smartphones, books etc.).
Students should bring their own paper!

Course information

  • Enrollment: 
    1. electronically for the module
    2. You have to register yourself in Moodle using your BTU account.
        There is no password required, registration can be done immediately.
  • first lecture: 2 April 2019. Here we shall also discuss potential changes of the lecturing hours.
  • first exercise: 5 April 2019
  • Final written exam: Tuesday, 24 September 2019,
                                    01:00 - 02:30 p. m.
                                    ZHG, HS A
  • Important information on prerequisites: The course at many places is relying on basic knowledge about discrete mathematics that you should have learned in your Bachelor's education. Typical examples are a basic familiarity with concepts such as groups, rings, and (finite) fields, vector spaces, basic number theoretic statements and algorithms such as prime number decomposition, the (extended) Euclidean algorithm, the Chinese Remainder Theorem etc. Though in the run of the course we briefly address those things again when they come up you are strongly recommended to  study them early again in textbooks as soon as you have the feeling that your knowledge or remembrance is not sufficient. Most of the books in the reference list contain brief surveys on these topics.

Additional literature

  • G. Baumslag, B. Fine, M. Kreuzer, G. Rosenberger: A course in mathematical cryptography, De Gruyter Graduate 2015
  • J. Buchmann: Einführung in die Kryptographie (in German), Springer 2016
  • V. Diekert, M. Kufleitner, G. Rosenberger: Diskrete Algebraische Methoden (in German), De Gryuter Studium 2013; the book in the meanwhile is also available in English
  • J. Hoffstein, J. Pipher, J.S. Silverman: An Introduction to Mathematical Cryptography, 2nd edition, 2014 Springer
  • O. Goldreich: Foundations of Cryptography - Volume I Basic Tools, Cambridge University Press 2001
  • J. Rothe: Komplexitätstheorie und Kryptologie (in German), Springer 2008
  • D.R. Stinson: Cryptography - Theory and Practice, CRC Press 1995

Exercise sheets

Sheet 1
online since: 05.04.2019
Sheet 2
online since:  24.04.2019
Sheet 3
online since: 09.05.2019
Sheet 4
online since: 07.06.2019
Sheet 5
online since: 11.05.2019
Sheet 6
online since: 05.07.2019
Sheet 7
online since:
Sheet 8
online since: