Laufende Projekte

Dünnschichtoxide für Gassensoren (DAAD, 57656558)

Untersuchung von Dünnschicht-Oxidhalbleitern für Gassensoren

Kurzbeschreibung:
Das grundlegende Ziel des Projekts ist die Konsolidierung der bilateralen Zusammenarbeit zwischen der BTU Cottbus-Senftenberg (Lehrstuhl für Angewandte Physik und Halbleiterspektroskopie) und der Wroclaw University of Science and Technology (Lehrstuhl für Mikroelektronik und Nanotechnologie) und die Verbesserung der Kompetenzen junger Wissenschaftler der beiden Einrichtungen auf dem Gebiet der Herstellung und Diagnostik neuartiger Strukturen auf Basis halbleitender Oxide für Sensoranwendungen. Insbesondere liegt der Schwerpunkt auf der Optimierung von Schlüsselparametern bei der Herstellung innovativer Dünnschichtoxid-Nanomaterialien für resistive, elektrochemische und optische (gasochrome) Sensoren, die für den Nachweis verschiedener Gase (z.B. Stickoxide, Ammoniak, Methan, Wasserstoff) und flüchtiger organischer Verbindungen (z. B. Ethanol) konzipiert sind. Die Wertschöpfungskette der Wasserstoffnutzung in Sektoren der erneuerbaren Energien erfordert die kontinuierliche Entwicklung von Sensoren und Detektoren, die eine sichere und nachhaltige Nutzung, Beförderung und Speicherung von Wasserstoff ermöglichen. Metalloxide (z. B. CeOx, SnOx, In2O3, VO3, WOx usw.) weisen eine starke chemische Reaktivität gegenüber reduzierenden Gasen (z. B. H2 und Kohlenwasserstoffe) auf, die mit einer starken Veränderung der Materialeigenschaften wie z.B. der elektrischen Leitfähigkeit einhergeht. Die Reduzierbarkeit dieser Oxide kann durch Legierungen mit zusätzlichen Elementen selektiv verändert werden, was die gezielte Einstellung ihrer Empfindlichkeit, Selektivität und Querempfindlichkeit für bestimmte Gase ermöglicht und sie zu vielversprechenden Kandidaten für aktive Sensorschichten macht. Darüber hinaus zeigt die Kombination von Seltenerd- und Übergangsmetalloxiden mit der Dotierung, mit  der Verwendung von Multilagenschichten oder farbigen Oberflächen ein hohes Potenzial zur Verringerung der Betriebstemperatur (<100 °C) der Metalloxidsensoren.

Kooperationspartner:

  • Lehrstuhl für Mikroelektronik und Nanotechnologie
    Wrocław University of Science and Technology
    Prof. DSc. PhD. Eng. Jarosław Domaradzki

Projektleiter:
Prof. Dr. rer. nat. habil. Jan Ingo Flege

Projektassistenz:
Dr. Małgorzata Kot

Laufzeit:
01.01.2023 - 31.12.2024

Förderkennzeichen/Projektnummer:
57656558

Fördernde Institution:
Deutscher Akademischer Austauschdienst (DAAD)
im Programm des Projektbezogenen Personenaustauschs (PPP) mit Polen 2023-2025

Schlagworte:
Metalloxidsensoren für Wasserstoff und Kohlenwasserstoffe

Laborinfrastruktur EIZ (Bund/Land, 85056897)

Laborinfrastrukur für das Energie-Innovationszentrum der BTU Cottbus-SenftenbergEinrichtung Energiespeicher und -wandler (»ES&EW«Labor)

Kurzbeschreibung
Im Rahmen dieser Maßnahme werden die infrastrukturellen Voraussetzungen für das »ES&EW«-Labor geschaffen.

Kooperationspartner

  • Fachgebiet Thermische Energietechnik
    Brandenburgische Technische Universität Cottbus - Senftenberg
    Prof. Dr. rer. nat. Lars Röntzsch
    Siemens-Halske-Ring 13
    03046 Cottbus
  • Lehrstuhl für Verbrennungskraftmaschinen und Flugantriebe
    Brandenburgische Technische Universität Cottbus - Senftenberg
    Prof. Dr.-Ing. Heinz Peter Berg
    Siemens-Halske-Ring 14
    03046 Cottbus

  • Lehrstuhl Thermodynamik/Thermische Verfahrenstechnik
    Prof. Dr.-Ing. Fabian Mauß
    Siemens-Halske-Ring 8
    03046 Cottbus

Projektleiter:
Prof. Dr. rer. nat. habil. Jan Ingo Flege
Dr. Fabian Rachow

Laufzeit:
29.09.2022 – 30.06.2026

Förderkennzeichen:
85056897

Fördernde Institution:
Dieses Projekt ist gefördert durch den Bund aus Mitteln des Investitionsgesetz Kohleregionen und kofinanziert aus Mitteln des Landes Brandenburg.

Weitere Informationen:

Energie-Innovationszentrum (BMBF, 03SF0693A)

Kurzbeschreibung
Im »ES&EW«-Labor sollen die drei Ebenen für Sektor-gekoppelte Energiesysteme – Wärme, Strom und Mobilität – in einem CO2 neutralen Kreislaufansatz, basierend auf Wasserstoff, abgebildet werden.
Auf allen Ebenen werden dafür die entsprechenden Elemente des Kreislaufansatzes entwickelt und optimiert, beginnend mit der Wasserstoffproduktion in unterschiedlichen Druckstufen und Verfahrenstechniken entsprechend des gewünschten Einsatzes (Hochdruck → Mobilität, Niederdruck → weitere Synthese).
Darauf aufbauend geht es um die Weiterverarbeitung des Wasserstoffs zu den synthetischen Kohlenwasserstoffen Methan und Methanol, sowie deren Rückverstromung im Oxyfuel-Prozess für eine emissionsfreie Rückführung der Abgase, in Form von hochkonzentriertem und reinem CO2, in den Stoffkreislauf.
Dabei wird jede der drei Ebenen in einem verständnisbasierten und simulationsgestützten Entwicklungsprozess im engen Austausch mit den EIZ-Einrichtungen EECON, DIVERSY, Scale-Up Lab, MoWes und SCL, für den Einsatz im Kreislaufsystem optimiert und weiterentwickelt.

In dem neu aufzubauenden »ES&EW«-Labor wird mit fortschrittlicher Messtechnik eine detaillierte Charakterisierung der Materialien, Komponenten und Prozessführung sowie die Optimierung ihres Zusammenspiels angestrebt.
Dazu wird aufbauend auf detaillierten experimentellen Analysen eine neuartige modellbasierte Simulations- und Optimierungsplattform entwickelt, die eine umfangreiche Prototypenvalidierung im frühen Entwicklungszeitraum ermöglicht.

Kooperationspartner

  • Fachgebiet Thermische Energietechnik
    Brandenburgische Technische Universität Cottbus - Senftenberg
    Prof. Dr. rer. nat. Lars Röntzsch
    Siemens-Halske-Ring 13
    03046 Cottbus
  • Lehrstuhl für Verbrennungskraftmaschinen und Flugantriebe
    Brandenburgische Technische Universität Cottbus - Senftenberg
    Prof. Dr.-Ing. Heinz Peter Berg
    Siemens-Halske-Ring 14
    03046 Cottbus

  • Lehrstuhl Thermodynamik/Thermische Verfahrenstechnik
    Prof. Dr.-Ing. Fabian Mauß
    Siemens-Halske-Ring 8
    03046 Cottbus

Projektleiter:
Prof. Dr. rer. nat. habil. Jan Ingo Flege
Dr. Fabian Rachow

Laufzeit:
01.08.2022 – 31.07.2026

Förderkennzeichen:
03SF0693A

Fördernde Institution:
Bundesministerium für Bildung und Forschung (BMBF)
Mittel des BMBF und Mittel für Maßnahmen zur Stärkung der Kohleregion

Schlagworte:
Sektorenkopplung, CO2-freie Kreislaufwirtschaft, synthetische Kraftstoffe
 

iCampus 2 (BMBF, 16ME0420K)

Innovationscampus Elektronik und Mikrosensorik Cottbus - iCampus2Thema: »Environmental Sensors« ; Teilprojekt: »Sensorik für fluide Kraftstoffe«

Kurzbeschreibung
Im Rahmen der Energiewende wandelt sich die Lausitz als traditionelle Energieregion strukturell vom Kohlerevier zur Modellregion der Wasserstoffstrategie, wobei (Kohlen-)Wasserstoffe (synthetische Kraftstoffe) als wichtige Energieträger der Zukunft für stationäre und mobile Anwendungen gelten. Dadurch entsteht ein enormer Bedarf an leistungsfähigen Sensoren für die sicherheitsrelevante Überwachung während des Transports und der Lagerung der fluiden Kraftstoffe sowie deren Nutzung beim Endkunden.
Das Ziel dieses Teilprojektes ist ein auf die Zusammenführung zweier Technologien (IHP, IPMS) beruhendes kombiniertes Sensorarray zur zukünftigen synchronen Erfassung von Wasserstoff und Kohlenwasserstoffen, das sich selbst kalibrieren und an bestehende Sensornetze angekoppelt werden kann.
Dafür sollen die in der ersten Phase des iCampus entwickelten Sensorkonzepte für resistive und optische Sensoren auf Siliziumbasis in der zweiten Phase zunächst durch Design- und Materialoptimierungsschritte verstetigt werden. Parallel dazu werden zunächst die technologischen Ansätze zur Realisierung von Matrixanordnungen geschaffen, die perspektivisch die Grundlagen einerseits für die Verbindung mehrerer Sensoren (z. B. elektronische Nasen) und andererseits für eine intelligente Signalaufbereitung bilden. Anschließend sollen die beiden Sensorprinzipien in eine CMOS-kompatible Plattform, inklusive digitaler Schnittstelle mit generischer Funktionalität,  zusammengeführt werden. Dabei soll eine konfigurierbare Mehrzweckplattform zur Signal- und Datenverarbeitung mit der Möglichkeit zur Ankopplung an verkabelte und drahtlose Standardindustrienetze und an eine 5G-Standardplattform entwickelt werden.

Kooperationspartner

  • Fachgebiet Experimentalphysik und Funktionale Materialien
    Brandenburgische Technische Universität Cottbus - Senftenberg
    Prof. Dr. rer. nat. habil. Inga Fischer
    Erich-Weinert-Straße 1
    03046 Cottbus
  • Fachgebiet Mikro- und Nanosysteme
    Brandenburgische Technische Universität Cottbus - Senftenberg
    Prof. Dr.-Ing. Dr. rer. nat. habil. Harald Schenk
    Konrad-Zuse-Straße 1
    D-03046 Cottbus

  • IHP GmbH – Leibniz Institut für innovative Mikroelektronik
    Prof. Dr. rer. nat. habil. Christian Wenger
    Im Technologiepark 25
    15236 Frankfurt (Oder)
  • Fraunhofer-Institut für Photonische Mikrosysteme (IPMS)
    Institutsteil »Integrated Silicon Systems«
    Dr. Sebastian Meyer
    Konrad-Zuse-Straße 1
    03046 Cottbus
  • Fachgebiet Technische Informatik
    Brandenburgische Technische Universität Cottbus - Senftenberg
    Prof. Dr.-Ing. Michael Hübner
    (Dr.-Ing. Marc Reichenbach, Vertretungsprofessor)
    Konrad-Wachsmann-Allee 5
    03046 Cottbus

Projektleiter:
Prof. Dr. rer. nat. habil. Jan Ingo Flege

Laufzeit:
01.01.2022 – 31.12.2026

Förderkennzeichen:
16ME0420K

Fördernde Institution:
Bundesministerium für Bildung und Forschung (BMBF)
innerhalb des Rahmenprogramms der Bundesregierung für Forschung und Innovation 2021-2024
»Mikroelektronik. Vertrauenswürdig und nachhaltig. Für Deutschland und Europa.«

Schlagworte:
Gassensoren, Mikrostrukturierung, Atomlagenabscheidung, Sensorplattform, intelligente Signalaufbereitung

Weitere Informationen:

ALD auf Perowskitschichten (BMWK, ZIM, KK5087602BR1)

Al2O3-ALD auf hybriden Perowskitschichten Teilprojekt: Herstellung der Perowskitschichten sowie spektroskopische Charakterisierung der ALD- und Perowskitschichten

Kurzbeschreibung
Das Gesamtziel des Vorhabens besteht in der Weiterentwicklung eines Verfahrens zur Atomlagenabscheidung (ALD) von hochqualitativen ultradünnen Aluminiumoxidschichten für deren Niedrigtemperaturbeschichtung (~80°C) auf großflächigen organisch-anorganischen Perowskitschichten. Die Herstellung der Perowskitschichten soll innerhalb des Vorhabens ebenfalls entwickelt werden. Das ALD-Verfahren auf Perowskitschichten soll vordergründig für Passivierungsschichten in Perowskitsolarzellen (PSZ) angewendet werden, aber auch für andere optoelektronische Bauelemente und z.B. Sensoren und Batterien ist es von hoher Relevanz. PSZ haben innerhalb kürzester Zeit eine immense Steigerung des Wirkungsgrades erfahren, einer Markteinführung steht aber vor allem ihre geringe Langzeitstabilität entgegen. Zur Erhöhung dieser dient die ALD-Passivierungsschicht, die bei geringen Prozesstemperaturen, ultradünn und sehr kontrolliert hergestellt wird, wodurch die thermisch empfindlichen Perowskitschichten nicht degradieren sowie der notwendige Transport der durch die lichtelektrische Wandlung generierten Ladungsträger durch die Passivierungsschicht zur Elektrode sichergestellt wird.

Kooperationspartner:
SENTECH Instruments GmbH
Schwarzschildstraße 2
12489 Berlin

Projektleiter:
Prof. Dr. rer. nat. habil. Jan Ingo Flege
Dr. rer. nat. Małgorzata Kot

Laufzeit:
01.07.2021 – 31.12.2023

Förderkennzeichen:
KK5087602BR1

Fördernde Institution:
Bundesministerium für Wirtschaft und Klimaschutz (BMWK) im Rahmen des Zentralen Innovationsprogrammes Mittelstand (ZIM)

Schlagworte:
Atomlagenabscheidung, Perowskitsolarzellen

MOVPE-AlGaO-Schichten (DFG, FL 548/13-1)

MOVPE-Wachstum und Charakterisierung dünner (AlxGa1-x)2O3-Filme für Hochleistungsbauelemente

Kurzbeschreibung:
Beta-Galliumoxid (β-Ga2O3) bietet aufgrund der deutlich höheren dielektrischen Durchbruchfestigkeit als die derzeit eingesetzten Materialien vielversprechende Perspektiven für die Hochleistungselektronik. β-Ga2O3-Schichten können zu geringeren Kosten und großflächiger als andere potentielle Materialien und zusätzlich auf Volumenkristallen mit kontrollierter n-Dotierung hergestellt werden. Die Performance von Hochleistungselektronikbauelementen ist direkt proportional zur dritten Potenz der Durchbruchsfeldstärke sowie zur Ladungsträgerbeweglichkeit. Der Einbau von Aluminium in β-Ga2O3 ermöglicht die Feineinstellung seiner Bandlücke und infolgedessen der Durchbruchsfeldstärke. Hierzu ist eine probate Methode notwendig, die das Wachstum hochqualitativer binärer Dünnschichtoxide mit optimierter Bandlücke unter Beibehaltung der sonstigen Materialeigenschaften gewährleistet.

Wir verfolgen in diesem Projekt einen neuartigen Ansatz zum Wachstum von dünnen β-(AlxGa1-x)2O3-Schichten (AlGaO) auf gitterangepasstem (100)-orientierten β-Ga2O3, der auf der metallorganischen Gasphasenepitaxie (MOVPE) beruht und Wachstumstemperarturen oberhalb 800°C mit damit verbundener höherer Aluminiumlöslichkeit ermöglicht. Zu diesem Zweck werden wir zunächst Aluminium-dotierte β-Ga2O3-Einkristalle mit minimaler Gitterfehlanpassung zur angestrebten AlGaO-Schicht wachsen. Anschließend wird die MOVPE-basierte Quasi-Homoepitaxie von hochqualitativen AlGaO-Dünnschichten auf diesen Substraten entwickelt und auf Basis ausgeklügelter Materialuntersuchungen optimiert. Dabei nutzen wir Methoden der Atomkraft-, Elektronen- und Photoemissionsmikroskopie, der in situ Röntgen- und Elektronenbeugung, der spektroskopischen Ellipsometrie sowie der Photoelektronenspektroskopie, um detaillierte Erkenntnisse über den Wachstumsmodus, die Morphologie und Zusammensetzung sowie die strukturellen, elektronischen, elektrischen und optischen Eigenschaften der AlGaO-Dünnschichten zu erhalten.

Insbesondere werden die limitierenden Faktoren für die Aluminiumverteilung und den maximal möglichen -einbau ohne Phasenseparation in β-Ga2O3 bestimmt. Außerdem werden wir die Möglichkeiten des Bandlücken- und Strain-Engineerings im AlGaO-Materialsystem ausloten, die Oberflächenmorphologie sowie die Grenzfläche zwischen AlGaO-Schicht und β-Ga2O3-Substrat untersuchen sowie elektrische und spektroskopische Analysen zum Verständnis der Defektbildung und zur Rolle von Verunreinigungen durchführen.

Unsere Strategie  gliedert sich wie folgt: (1) Präparation von Aluminium-dotierten (bis zu 15%) β-Ga2O3-Kristallen (bis zu 2 Zoll) als Substrate für die nachfolgende Quasi-Homoepitaxie von AlGaO-Dünnschichten und Charakterisierung der hergestellten Schichten, um (2) das Wachstum zu optimieren und (3) die anwendungsspezifischen Eigenschaften zu evaluieren. Insbesondere fokussiert das Projekt auf den maximal erreichbaren Aluminiumanteil in den AlGaO-Schichten, der zur höchstmöglichen Bandlücke und Durchbruchfeldstärke führt.

Kooperationspartner:

  • Dr. Andreas Popp und Dr. Zbigniew Galazka
    Leibniz-Institut für Kristallzüchtung (IKZ)
    Abteilung Schichten und Nanostrukturen
    Max-Born-Straße 2
    12489 Berlin
  • Dr. Vedran Vonk
    Deutsches Elektronen-Synchrotron (DESY) Standort Hamburg DESY
    Research Group X-ray Physics and Nanoscience
    DESY Nanolaboratory
    Notkestr. 85
    D-22607 Hamburg

Projektleiter:
Prof. Dr. rer. nat. habil. Jan Ingo Flege

Laufzeit:
01.01.2023-31.12.2025

Förderkennzeichen:
FL 548/13-1

Projektnummer:
491040331 (GEPRIS)

Fördernde Institution:
Deutsche Forschungsgemeinschaft (DFG)

Schlagworte:
Galliumoxid, Metallorganische Gasphasenepitaxie, Materialcharakterisierung, Photoelektronenspektroskopie, Röntgenbeugung