Forschungsseminar Analysis und Optimierung Prof. Hauer, Prof. Pickenhain, Prof. Wachsmuth
- Vorträge von Studierenden zu Seminar- und Abschlussarbeiten
- Vorträge aus den Fachgebieten
- Vorträge von Gästen
Termine: Jeweils donnerstags, 13:45 - 15:15 im Raum HG 3.45
Anstehende Vorträge
Datum | Vortragende | Titel |
24.04.2025 | Dr. Firoj Sk | On logarithmic p-Laplacian |
08.05.2025 | Markus Friedemann | Optimal Control of ODEs with control values in \(\{0\} \cup [a,b]\) and TV-regularization. |
15.05.2025 | Prof. Dr. Daniel Hauer | t.b.a. |
22.05.2025 | Dr. Guy Foghem | t.b.a. |
05.06.2025 | Dr. Andreas Künnemann | t.b.a. |
12.06.2025 | Jessica Slegers | t.b.a. |
19.06.2025 | Tobias Starke | t.b.a. |
03.07.2025 | Nicolas Borchard | t.b.a. |
03.07.2025 | Jonas Marko | t.b.a. |
10.07.2025 | Prof. Dr. Gerd Wachsmuth | t.b.a. |
Abstracts
On logarithmic p-Laplacian - Dr. Firoj Sk
In this talk, we introduce and analyze the logarithmic p-Laplacian \(L_{\Delta_p}\), a nonlocal operator of logarithmic order that arises as the formal derivative of the fractional p-Laplacian \((-\Delta_p)^s\) at s=0. This operator serves as a nonlinear extension of the recently developed logarithmic Laplacian operator. We present a variational framework to study Dirichlet problems involving \(L_{\Delta_p}\) in bounded domains, which enables us to explore the relationship between the first Dirichlet eigenvalue and eigenfunction of both the fractional p-Laplacian and the logarithmic p-Laplacian. As a key result, we obtain a Faber–Krahn-type inequality for the first Dirichlet eigenvalue of \(L_{\Delta_p}\). Additionally, we examine the validity of maximum and comparison principles, showing that these depend on the sign of the first Dirichlet eigenvalue of \(L_{\Delta_p}\). Finally, we discuss a boundary Hardy-type inequality for the spaces associated with the weak formulation of the logarithmic p-Laplacian.
The talk is based on joint work with B. Dyda and S. Jarohs.