Numerische Strömungs- und Gasdynamik Univ.-Prof. Dr.-Ing. Heiko Schmidt

[1]   J. A. Medina M., M. Klein, H. Schmidt (2019). One-Dimensional Turbulence investigation of variable density effects due to heat transfer in a low Mach number internal air flow, International Journal of Heat and Fluid Flow, (accepted)

[2]   M. Fragner, H. Schmidt (2017). Investigating Asymptotic Suction Boundary Layers using a One-Dimensional Stochastic Turbulence Model, Journal of Turbulence, 18, 899-928

[3]   Z. Jozefik, A. R. Kerstein, H. Schmidt (2016). Simulation of shock–turbulence interaction in non-reactive flow and in turbulent deflagration and detonation regimes using one-dimensional turbulence, Combustion and Flame, 164, 53-67

[4]   T. Starick, D. O. Lignell, H. Schmidt (2019). One-dimensional turbulence modelling of a lifted methane/air jet flame in a vitiated coflow, Proceedings of International Symposium on Turbulence and Shear Flow Phenomena, Southampton, UK

[5]   S. Sharma, E. Sarradj, H. Schmidt (2020). Stochastic modelling of leading-edge noise in time-domain using vortex particles, Journal of Sound and Vibration, 115656, https://doi.org/10.1016/j.jsv.2020.115656

[6]   M. Klein, C. Zenker, H. Schmidt (2019). Small-scale resolving simulations of the turbulent mixing in con ned planar jets using one-dimensional turbulence, Chemical Engineering Science, 204, 186-202, https://doi.org/10.1016/j.ces.2019.04.024

[7]   Rakhi, M. Klein, J. A. Medina M., H. Schmidt (2019). One-dimensional turbulence modelling of incompressible temporally developing turbulent boundary layers with comparison to DNS, Journal of Turbulence, 20, 506-543, https://doi.org/10.1080/14685248.2019.1674859

[8]   T. Starick, H. Schmidt (2019). Hierarchical Parcel Swapping: An efficient mixing model for turbulent reactive ows, Proceedings in Applied Mathematics and Mechanics, 19, 1-2, https://doi.org/10.1002/pamm.201900492

[9]   T. Starick, J. A. Medina M., H. Schmidt (2019). One-Dimensional Turbulence simulations for reactive ows in open and closed systems, Technische Mechanik, 39, 162-174, https://doi.org/10.24352/UB.OVGU-2019-015

[10]   C. Glawe, J. A. Medina M., H. Schmidt (2018). IMEX based Multi-Scale Time Advancement in ODTLES, Zeitschrift fr angewandte Mathematik und Mechanik, https://doi.org/10.1002/zamm.201800098

[11]   D. Lignell, V. B. Lansinger, J. Medina, M. Klein, A. R. Kerstein, H. Schmidt, M. Fistler, M. Oevermann (2018). One-dimensional turbulence modeling for cylindrical and spherical ows: model formulation and application, Theoretical and Computational Fluid Dynamics, 32, 495-520, https://doi.org/10.1007/s00162-018-0465-1

[12]   J. A. Medina M., H. Schmidt, F. Mauss, Z. Joze k (2018). Constant volume n-Heptane autoignition using One-Dimensional Turbulence, Combustion and Flame, 190, 388-401, https://doi.org/10.1016/j.combustame.2017.12.015

[13]   A. Movaghar, M. Linne, M. Oevermann, F. Meiselbach, H. Schmidt, A .R. Kerstein (2017). Numerical investigation of turbulent-jet primary breakup using One-Dimensional Turbulence, International Journal of Multiphase Flow, 89, 241254, https://doi.org/10.1016/j.ijmultiphaseow.2016.09.023

[14]   Z. Jozefik, A. R. Kerstein, H. Schmidt (2016). Simulation of shockturbulence interaction in non-reactive flow and in turbulent deflagration and detonation regimes using one-dimensional turbulence, Combustion and Flame, 164, 53-67, https://doi.org/10.1016/j.combustame.2015.10.035